Seite drucken

Volker Turau

Foto von Volker Turau
Prof. Dr. rer. nat. Volker Turau
Raum 4.088, Gebäude E
Am Schwarzenberg-Campus 3
21073 Hamburg
Telefon040 42878 - 3530
Fax040 42878 - 2581
E-Mail

Seit Oktober 2002 bin ich Professor an der Technischen Universität Hamburg-Harburg.


Program Committee Activities | Editorial Activities | CV | Doktoranden

Bücher

Algorithmische Graphentheorie - 4., erweiterte und überarbeitete Auflage
De Gruyter Studium, 2015, ISBN 978-3-110-41727-2 (Lösungen)

Erdős-Zahl

Meine Erdős-Zahl ist 4.

Lehre

Publikationen

Florian Kauer und Volker Turau. Constructing Customized Multi-Hop Topologies in Dense Wireless Network Testbeds. In Proceedings of International Conference on Ad Hoc Networks and Wireless (AdHocNow 2018), September 2018. Saint Malo, France. To be published.
@InProceedings{Telematik_adhocnow_2018, author = {Florian Kauer and Volker Turau}, title = {Constructing Customized Multi-Hop Topologies in Dense Wireless Network Testbeds}, booktitle = {Proceedings of International Conference on Ad Hoc Networks and Wireless (AdHocNow 2018)}, pages = , day = {5-7}, month = sep, year = 2018, location = {Saint Malo, France}, }
Abstract: Testbeds are a key element in the evaluation of wireless multi-hop networks. In order to relieve researchers from the hassle of deploying their own testbeds, remotely controllable testbeds, such as the FIT/IoT-LAB, are built. However, while the IoT-LAB has a high number of nodes deployed in constraint areas. This, together with the complex nature of radio propagation, makes an ad-hoc construction of multi-hop topologies with higher number of hops difficult. This work presents a strategic approach to solve this problem and proposes algorithms to generate topologies with desired properties. The implementation is provided as open-source software. The algorithms are evaluated for the IoT-LAB testbeds. The results show that preset topologies of various types can be built even in dense wireless testbeds.
Volker Turau. A Distributed Algorithm for Finding Hamiltonian Cycles in Random Graphs in O(log n) Time. In Lecture Notes in Computer Science - Proceedings of 25th International Colloquium on Structural Information and Communication Complexity (Scirocco 2018), Juni 2018. Ma'ale HaHamisha, Israel. To be published.
@InProceedings{Telematik_Scirocco_2018, author = {Volker Turau}, title = {A Distributed Algorithm for Finding Hamiltonian Cycles in Random Graphs in O(log n) Time}, booktitle = {Lecture Notes in Computer Science - Proceedings of 25th International Colloquium on Structural Information and Communication Complexity (Scirocco 2018)}, pages = , day = {18-21}, month = jun, year = 2018, location = {Ma'ale HaHamisha, Israel}, }
Abstract: It is known for some time that a random graph G(n, p) con- tains w.h.p. a Hamiltonian cycle if p is larger than the critical value pcrit = (log n+log log n+ωn)/n. The determination of a concrete Hamil- tonian cycle is even for values much larger than pcrit a nontrivial task. In this paper we consider random graphs G(n, p) with p in Ω ̃(1/√n), where Ω ̃ hides poly-logarithmic factors in n. For this range of p we present a distributed algorithm AHC that finds w.h.p. a Hamiltonian cycle in O(log n) rounds. The algorithm works in the synchronous model and uses messages of size O(log n) and O(log n) memory per node.
Florian Kauer und Volker Turau. An analytical model for wireless mesh networks with collision-free TDMA and finite queues. EURASIP Journal on Wireless Communications and Networking, Juni 2018.
@Article{Telematik_openaccess_2018, author = {Florian Kauer and Volker Turau}, title = {An analytical model for wireless mesh networks with collision-free TDMA and finite queues}, pages = , journal = {EURASIP Journal on Wireless Communications and Networking}, volume = {}, month = jun, year = 2018, }
Abstract: Wireless mesh networks are a promising technology for connecting sensors and actuators with high flexibility and low investment costs. In industrial applications, however, reliability is essential. Therefore, two time-slotted medium access methods, DSME and TSCH, were added to the IEEE 802.15.4 standard. They allow collision-free communication in multi-hop networks and provide channel hopping for mitigating external interferences. The slot schedule used in these networks is of high importance for the network performance. This paper supports the development of efficient schedules by providing an analytical model for the assessment of such schedules, focused on TSCH. A Markov chain model for the finite queue on every node is introduced that takes the slot distribution into account. The models of all nodes are interconnected to calculate network metrics such as packet delivery ratio, end-to-end delay, and throughput. An evaluation compares the model with a simulation of the Orchestra schedule. The model is applied to Orchestra as well as to two simple distributed scheduling algorithms to demonstrate the importance of traffic-awareness for achieving high throughput.

Die vollständige Publikationsliste ist separat verfügbar.