Counting Fixed Points and Pure 2-Cycles of Tree Cellular Automata

Volker Turau

LATIN 2024, Puerto Varas/Chile March $21^{\text {st }}, 2024$

Introduction

Discrete Synchronous Dynamical Systems (DSDS)

- Let G be a finite graph, each node has a state from a finite domain
- In discrete-time rounds, all nodes concurrently update their state based on local rule
- Node's state in round t is determined by states of neighboring nodes in round $t-1$
- Facts
- After a finitely many rounds a DSDS either reaches a fixed point or enters a 2-cycle
- Finding number of fixed points of a DSDS is in general \#P-complete, i.e. problems defined as counting number of accepting paths of polynomial-time non-deterministic Turing machine

Challenges

- For a given DSDS count number of
- fixed points
- 2-cycles
- gardens of Eden configurations
- Give lower and upper bounds for these numbers

Known Facts

- Exact enumeration of fixed points and other types of configurations is computational hard in general
- This holds even in some severely restricted cases with respect to both network topology and update rules [Tošić 2010]
- monotone update rules
- each node has at most three neighbors
- 2-state model

Contributions

- Model of this work
- State of a node: 0 or 1 (called colors)
- Local rules: Majority and minority rule
- Finite trees
- Main contributions
- Algorithm to determine number of fixed points of a tree T in time $O(n \Delta)$
- Upper and lower bounds based on
- diameter D(T)
- maximal degree $\Delta(T)$

Motivation

- Boolean networks (BN) model dynamics of gene regulatory networks
- BNs are special type of DSDS for majority rule
- Number of fixed points is a measure for general memory storage capacity of BN
- BNs can solve SAT problems
- BN fixed points correspond to SAT solutions

Definitions

Definitions

Discrete Synchronous Dynamical System (DSDS)

Let $G(V, E)$ be a finite graph and $C(G)$ the set of all mappings $c: V \longrightarrow\{0,1\}$. A DSDS is a mapping

$$
\mathcal{M}: C(G) \longrightarrow C(G)
$$

For each $c \in \mathcal{C}(G), \mathcal{M}$ yields a series of colorings $c, \mathcal{M}(c), \mathcal{M}(\mathcal{M}(c)), \ldots$.

Minority Process

Minority process: Each node assumes color of minority of its neighbors.

Example of Minority Process

Definitions

Fixed Points and 2-Cycles
$c \in C(G)$ is called

- fixed point if $\mathcal{M}(c)=c$
- 2-cycle if $\mathcal{M}(c) \neq c$ and $\mathcal{M}(\mathcal{M}(c))=c$

A 2-cycle c is called pure if it is $\mathcal{M}(c)(v) \neq c(v)$ for each node v of G

Examples

A fixed point

A pure 2-cycle

A non-pure 2-cycle

Classes

Classes

- $\mathcal{F}_{\mathcal{M}}(G):$ All $c \in \mathcal{C}(G)$ that constitute a fixed point
- $\mathcal{P}_{\mathcal{M}}(G):$ All $c \in \mathcal{C}(G)$ that constitute a pure 2-cycle
- Classes are closed with respect to complements
- Let $\mathcal{F}_{\mathcal{M}}(G)^{+}\left(\operatorname{resp} . \mathcal{P}_{\mathcal{M}}(G)^{+}\right)$be the subset of $\mathcal{F}_{\mathcal{M}}(G)\left(\operatorname{resp} . \mathcal{P}_{\mathcal{M}}(G)\right)$ which a globally distinguished node v^{*} has state 0

Fixed Points of Trees

Characterizing Fixed Points

- Let $T=(V, E)$ be a tree
- $F \subseteq E$ is called \mathcal{F}-legal if $2 \operatorname{deg}_{F}(v) \leq \operatorname{deg}(v)$ for each $v \in V$
- Let $E_{f x x}(T)$ be the set of all \mathcal{F}-legal subsets of $E(T)$

$$
\begin{aligned}
& \text { Theorem (Turau 2022) } \\
& \left|E_{f i x}(T)\right|=\left|\mathcal{F}_{\mathcal{M}}(T)^{+}\right|
\end{aligned}
$$

\mathcal{F}-legal Subsets

- $E_{f x i}\left(T_{1}\right)=\{\varnothing,\{(1,3)\}\}$
- $E_{f x}\left(T_{2}\right)=\{\varnothing\}$
- $E_{f i x}\left(T_{3}\right)=\{\varnothing,\{(1,2)\},\{(2,3)\},\{(3,4)\},\{(1,2),(3,4)\}\}$

Counting Fixed Points of Paths

Corollary

Let P_{n} be a path with n nodes, then $\left|E_{f i x}\left(P_{n}\right)\right|=\mathbb{F}_{n-1}$.
Proof by induction:

without edge (3,4): $\quad \stackrel{0}{0}-\stackrel{1}{0}-\stackrel{2}{0}-\stackrel{3}{0}-{ }_{0}^{0}$
with edge $(3,4)$:

Decomposing \mathcal{F}-legal Subsets

Two categories of \mathcal{F}-legal subsets: Without and with e

Decomposing \mathcal{F}-legal Subsets

Without edge e:

U

With edge e:

U

Recursively Counting Fixed Points of Trees

- For $e=\left(v_{1}, v_{2}\right) \in E$ with $\operatorname{deg}\left(v_{i}\right)>1$ let T_{i} be the subtree of T consisting of e and the connected component of $T \backslash e$ that contains v_{i}
- For $v \in V$ define $E_{f i x}(T, v)=\left\{F \in E_{f i x}(T) \mid 2 \operatorname{deg}_{F}(v) \leq \operatorname{deg}(v)-2\right\}$

Lemma

Let $T=(V, E)$ be a tree, $e=\left(v_{1}, v_{2}\right) \in E$ with $\operatorname{deg}\left(v_{i}\right)>1$. Then

$$
\left|E_{f i x}(T)\right|=\left|E_{f i x}\left(T_{1}, v_{1}\right)\right|\left|E_{f i x}\left(T_{2}, v_{2}\right)\right|+\left|E_{f i x}\left(T_{1}\right)\right|\left|E_{f i x}\left(T_{2}\right)\right|
$$

Recursively Counting Fixed Points of Trees

- How to compute $\left|E_{f i x}\left(T_{1}, v_{1}\right)\right|$? Generalize notion of \mathcal{F}-legal subsets

- Select a node of T_{R} as a root and assign numbers $1, \ldots, t$ to nodes in T_{R} using a postorder depth-first search

Recursively Counting Fixed Points of Trees

- For $k=1, \ldots, t-1$ denote by T_{k} the subtree of T_{R} consisting of k 's parent together with all nodes connected to k 's parent by paths using only nodes with numbers at most k
- Apply last lemma successively to all T_{k}

Theorem

The number of fixed points of a tree with n nodes and maximal node degree Δ can be computed in time $O(n \Delta)$.

Upper Bounds

Bounds depending on Δ

Theorem

$$
\left|E_{f i x}(T)\right| \leq 2^{n-\Delta-1}
$$

Proof.

- Let $E^{2}(T)$ be the edges of T, where each end node has degree at least 2
- $\left|E_{f i x}(T)\right| \leq 2^{\left|E^{2}(T)\right|}$, since $E_{f i x}(T) \subseteq \mathcal{P}\left(E^{2}(T)\right)$, the power set of $E^{2}(T)$
- Let l be the number of leaves of T, then $l=2+\sum_{j=3}^{\Delta}(j-2) \Delta_{j}$
- $\left|E^{2}(T)\right|=n-1-l=n-3-\sum_{j=3}^{\Delta}(j-2) D_{j} \leq n-3-(\Delta-2)=n-\Delta-1$

Bounds depending on Δ

- The bound is sharp for $\Delta \geq n-\lceil n / 3\rceil$

- For $x=2 \Delta-n+1$ we have $\Delta-x \leq x$

$$
E_{f i x}\left(T_{m}\right)=\sum_{i=0}^{\Delta-x}\binom{\Delta-x}{i}=2^{\Delta-x}=2^{n-\Delta-1}
$$

A Special Case

Lemma

Let T be a tree with a single node v that has degree larger than 2 . Let \mathcal{D} be the multi-set with the distances of all leaves to v. Then

$$
\left|E_{f i x}(T)\right|=\sum_{S \subset \mathcal{D},|S| \leq \Delta / 2} \prod_{S \in S} \mathbb{F}_{S} \prod_{S \in \mathcal{D} \backslash S} \mathbb{F}_{S-1} .
$$

Sketch of Proof.

- Let \mathcal{P} be the set of all Δ paths from v to a leaf of T
- For $P \in \mathcal{P}$ let \hat{P} be an extension of P by one node. Let $\mathcal{P}_{1} \subset \mathcal{P}$ with $\left|\mathcal{P}_{1}\right| \leq \Delta / 2$
- Let $P_{1} \in \mathcal{P}_{1}$ and $P_{2} \in \mathcal{P} \backslash \mathcal{P}_{1}$. If $\hat{F}_{P_{1}} \in E_{f i x}\left(\hat{P}_{1}\right)$ and $F_{P_{2}} \in E_{f i x}\left(P_{2}\right)$ then $\hat{F}_{P_{1}} \cup F_{P_{2}} \in E_{f i x}(T)$ and vice versa

A Special Case

Lemma

Let T be a 2-generalized star graph. Then $\left|E_{f i x}(T)\right| \leq \mathbb{F}_{n-[\Delta / 27}$.

Proof.

We use the lemma. If $\Delta \equiv 0(2)$ then

$$
\left|E_{f x}(T)\right|=\sum_{i=0}^{\lfloor\Delta / 2\rfloor}\binom{\Delta}{i}=\frac{1}{2}\left(2^{\Delta}+\binom{\Delta}{\Delta / 2}\right) \leq \mathbb{F}_{3 \Delta / 2+1}=\mathbb{F}_{n-\Delta / 2},
$$

otherwise $\left|E_{f i x}(T)\right|=2^{\Delta-1} \leq \mathbb{F}_{n-\lceil\Delta / 2\rceil}$.

General Case

Theorem

$\left|E_{f i x}(T)\right| \leq \mathbb{F}_{n-\lceil\Delta / 2\rceil}$ for a tree T with n nodes.

Sketch of Proof.

- Induction on n
- There exists edge (v, w) where v is a leaf and all neighbors of w but one are leaves
- If $\operatorname{deg}(w)>2$ then there exists a neighbor $u \neq v$ of w that is a leaf. Let $T_{u}=T \backslash u$.
- Then $\left|E_{f i x}(T)\right|=\left|E_{f i x}\left(T_{u}\right)\right|$ and since $\Delta\left(T_{u}\right) \geq \Delta(T)-1$ we have by induction

$$
\left|E_{f i x}(T)\right|=\left|E_{f i x}\left(T_{u}\right)\right| \leq \mathbb{F}_{n-1-\left\lceil\Delta\left(T_{u}\right) / 2\right\rceil} \leq \mathbb{F}_{n-\lceil\Delta(T) / 2\rceil}
$$

Hence, we assume $\operatorname{deg}(w)=2$

General Case

Proof contd.

- Let $u \neq v$ be $2^{\text {nd }}$ neighbor of w. Denote by T_{v} (resp. T_{w}) the tree $T \backslash v$ (resp. $T \backslash\{v, w\}$)
- Then $\left|E_{f i x}(T)\right| \leq\left|E_{f x}\left(T_{v}\right)\right|+\left|E_{f i x}\left(T_{w}\right)\right|$
- If there exists a node different from u with degree Δ then by induction

$$
\left|E_{f i x}(T)\right| \leq \mathbb{F}_{n-1-\lceil\Delta / 2\rceil}+\mathbb{F}_{n-2-\lceil\Delta / 2\rceil}=\mathbb{F}_{n-\lceil\Delta / 2\rceil}
$$

- Assume that u is the only node with degree Δ. Repeating above argument shows that T is 2-generalized star graph
- Hence, $\left|E_{f i x}(T)\right| \leq \mathbb{F}_{n-\lceil\Delta / 2\rceil}$ by above Lemma

Conjecture

- Let $\tau_{n, \Delta}:=\max \left\{\left|E_{f x x}(T)\right| \mid T\right.$ is a tree with n nodes and maximal degree $\left.\Delta\right\}$

$$
\begin{aligned}
& \text { Conjecture } 1 \\
& \tau_{n, \Delta}=\tau_{n-1, \Delta}+\tau_{n-2, \Delta} \text { for } \Delta<(n-1) / 2
\end{aligned}
$$

Lower Bounds

Theorem

Let T be a tree. If the tree obtained from T by removing all leaves has r inner nodes, then

$$
\left|E_{f i x}(T)\right| \geq 2^{r / 2}
$$

If T has diameter D, then

$$
\left|E_{f i x}(T)\right| \geq \mathbb{F}_{D}
$$

There are trees for which $\left|E_{f i x}(T)\right|$ is much larger than \mathbb{F}_{D}

$$
\left|E_{f x}(T)\right|=\mathbb{F}_{D} \mathbb{F}_{n-D-1}+\mathbb{F}_{h} \mathbb{F}_{D-h} \mathbb{F}_{n-D-2}
$$

Conjecture

Conjecture 2

Except for a finite number of cases for each combination of n and D there exists a star-like graph that maximizes the number of fixed points

A tree with 32 nodes and diameter 7 with 181376 fixed points. All other trees with 32 nodes and diameter 7 have less fixed points.

Pure 2-Cycles

Characterizing Pure 2-Cycles

- Let $T=(V, E)$ be a tree
- $F \subseteq E$ is called \mathcal{P}-legal if $\operatorname{~deg}_{F}(v)<\operatorname{deg}(v)$ for each $v \in V$
- Let $E_{\text {pure }}(T)$ be the set of all \mathcal{P}-legal subsets of $E(T)$

Theorem (Turau 2022)

$\left|E_{\text {pure }}(T)\right|=\left|\mathcal{P}_{\mathcal{M}}(T)^{+}\right|$
Since $E_{\text {pure }}(T) \subseteq E_{f i x}(T)$ we have $\left|\mathcal{P}_{\mathcal{M}}(T)\right| \leq\left|\mathcal{F}_{\mathcal{M}}(T)\right| \leq 2 \mathbb{F}_{n-\lceil\Delta / 2\rceil}$

Theorem

The number of pure 2-cycles of a tree with n nodes and maximal node degree Δ can be computed in time $O(n \Delta)$.

Example

- $E_{\text {pure }}\left(T_{2}\right)=\{\varnothing,\{a\},\{b\},\{c\},\{a, c\}\}$
- Pure 2-cycle for $F=\{a, c\}$

Counting Pure 2-cycles of Trees

Theorem

A tree with maximal degree Δ has at most $\min \left(2^{n-\Delta}, 2 \mathbb{F}_{\lfloor n / 2\rfloor}\right)$ pure 2-cycles.

Theorem

Let T a tree with n nodes, diameter D, and maximal degree Δ.

1. If $2 D \geq n$ then $\left|E_{\text {pure }}(T)\right| \leq \mathbb{F}_{n-D}$
2. If $n<2 \Delta+1$ then $\left|E_{\text {pure }}(T)\right| \leq 2^{\left\lfloor\frac{n-\Delta-1}{2}\right\rfloor}$

These bound are sharp.

Conclusion

Conclusion \& Outlook

- Contributions
- Counting fixed points for general cellular automata is \#P-complete
- For tree cellular automata based on minority/majority rule problem solvable in time $O(\Delta n)$
- Upper and lower bounds for number of fixed points and pure 2-cycles
- Open problems
- Other classes of graphs for which problem solvable in polynomial time
- Counting configurations with no predecessor (garden of Eden)

Counting Fixed Points and Pure 2-Cycles of Tree Cellular Automata

Volker Turau

Professor
Phone $\quad+49$ / (0)40 428783530
e-Mail turau@tuhh.de
http://www.ti5.tu-harburg.de/staff/turau

Institute of Telematics
Hamburg University of Technology

