Counting Fixed Points and Pure 2-Cycles of Tree Cellular Automata

Volker Turau

LATIN 2024, Puerto Varas/Chile March 21st, 2024

> Institute of Telematics Hamburg University of Technology

TUHH

Introduction

Discrete Synchronous Dynamical Systems (DSDS)

- Let G be a finite graph, each node has a state from a finite domain
- In discrete-time rounds, all nodes concurrently update their state based on local rule
 - Node's state in round t is determined by states of neighboring nodes in round t 1
- Facts
 - After a finitely many rounds a DSDS either reaches a fixed point or enters a 2-cycle
 - Finding number of fixed points of a DSDS is in general #P-complete, i.e. problems defined as counting number of accepting paths of polynomial-time non-deterministic Turing machine

Challenges

- For a given DSDS count number of
 - fixed points
 - 2-cycles
 - gardens of Eden configurations
- Give lower and upper bounds for these numbers

Known Facts

- Exact enumeration of fixed points and other types of configurations is computational hard in general
- This holds even in some severely restricted cases with respect to both network topology and update rules [Tošić 2010]
 - monotone update rules
 - each node has at most three neighbors
 - 2-state model

Contributions

- Model of this work
 - State of a node: 0 or 1 (called colors)
 - Local rules: Majority and minority rule
 - Finite trees
- Main contributions
 - Algorithm to determine number of fixed points of a tree T in time $O(n\Delta)$
 - Upper and lower bounds based on
 - ► diameter *D*(*T*)
 - maximal degree $\Delta(T)$

Motivation

- Boolean networks (BN) model dynamics of gene regulatory networks
- BNs are special type of DSDS for majority rule
- Number of fixed points is a measure for general memory storage capacity of BN
- BNs can solve SAT problems
- BN fixed points correspond to SAT solutions

Discrete Synchronous Dynamical System (DSDS)

Let G(V, E) be a finite graph and C(G) the set of all mappings $c : V \longrightarrow \{0, 1\}$. A **DSDS** is a mapping

 $\mathcal{M}: \mathcal{C}(\mathsf{G}) \longrightarrow \mathcal{C}(\mathsf{G})$

For each $c \in C(G)$, M yields a series of colorings $c, M(c), M(M(c)), \ldots$

Minority Process

Minority process: Each node assumes color of minority of its neighbors.

Example of Minority Process

Fixed Points and 2-Cycles

- $c \in C(G)$ is called
- fixed point if $\mathcal{M}(c) = c$
- **2-cycle** if $\mathcal{M}(c) \neq c$ and $\mathcal{M}(\mathcal{M}(c)) = c$

A 2-cycle *c* is called **pure** if it is $\mathcal{M}(c)(v) \neq c(v)$ for each node *v* of *G*

Examples

Classes

Classes

- $\mathcal{F}_{\mathcal{M}}(G)$: All $c \in C(G)$ that constitute a fixed point
- $\mathcal{P}_{\mathcal{M}}(G)$: All $c \in C(G)$ that constitute a pure 2-cycle

Classes are closed with respect to complements

Let 𝓕_M(G)⁺ (resp. 𝒫_M(G)⁺) be the subset of 𝓕_M(G) (resp. 𝒫_M(G)) which a globally distinguished node v^{*} has state 0

Fixed Points of Trees

Characterizing Fixed Points

- Let T = (V, E) be a tree
- $F \subseteq E$ is called \mathcal{F} -legal if $2deg_F(v) \leq deg(v)$ for each $v \in V$
- Let $E_{fix}(T)$ be the set of all \mathcal{F} -legal subsets of E(T)

Theorem (Turau 2022) $|E_{fix}(T)| = |\mathcal{F}_{\mathcal{M}}(T)^+|$

\mathcal{F} -legal Subsets

- $E_{fix}(T_1) = \{\emptyset, \{(1,3)\}\}$
- $E_{fix}(T_2) = \{\emptyset\}$

• $E_{fix}(T_3) = \{\emptyset, \{(1,2)\}, \{(2,3)\}, \{(3,4)\}, \{(1,2), (3,4)\}\}$

Counting Fixed Points of Paths

Corollary

Let P_n be a path with n nodes, then $|E_{fix}(P_n)| = \mathbb{F}_{n-1}$.

Proof by induction:

Decomposing \mathcal{F} -legal Subsets

Two categories of \mathcal{F} -legal subsets: Without and with e

Decomposing \mathcal{F} -legal Subsets

Without edge e:

With edge e:

Recursively Counting Fixed Points of Trees

- For e = (v₁, v₂) ∈ E with deg(v_i) > 1 let T_i be the subtree of T consisting of e and the connected component of T \ e that contains v_i
- For $v \in V$ define $E_{fix}(T, v) = \{F \in E_{fix}(T) \mid 2deg_F(v) \le deg(v) 2\}$

Lemma Let T = (V, E) be a tree, $e = (v_1, v_2) \in E$ with $deg(v_i) > 1$. Then

 $|E_{fix}(T)| = |E_{fix}(T_1, v_1)||E_{fix}(T_2, v_2)| + |E_{fix}(T_1)||E_{fix}(T_2)|$

Fixed Points of Trees

Recursively Counting Fixed Points of Trees

• How to compute $|E_{fix}(T_1, v_1)|$? Generalize notion of \mathcal{F} -legal subsets

Select a node of T_R as a root and assign numbers 1,..., t to nodes in T_R using a postorder depth-first search

Recursively Counting Fixed Points of Trees

- For k = 1, ..., t 1 denote by T_k the subtree of T_R consisting of k's parent together with all nodes connected to k's parent by paths using only nodes with numbers at most k
- Apply last lemma successively to all T_k

Theorem

The number of fixed points of a tree with n nodes and maximal node degree Δ can be computed in time $O(n\Delta)$.

Upper Bounds

Bounds depending on Δ

Theorem

$$|E_{fix}(T)| \le 2^{n-\Delta-1}.$$

Proof.

- Let $E^2(T)$ be the edges of T, where each end node has degree at least 2
- $|E_{fix}(T)| \le 2^{|E^2(T)|}$, since $E_{fix}(T) \subseteq \mathcal{P}(E^2(T))$, the power set of $E^2(T)$
- Let *l* be the number of leaves of *T*, then $l = 2 + \sum_{i=3}^{\Delta} (j-2)\Delta_j$

•
$$|E^{2}(T)| = n - 1 - l = n - 3 - \sum_{j=3}^{\Delta} (j-2)D_{j} \le n - 3 - (\Delta - 2) = n - \Delta - 1$$

Bounds depending on Δ

• The bound is sharp for $\Delta \ge n - \lceil n/3 \rceil$

For $x = 2\Delta - n + 1$ we have $\Delta - x \le x$

$$E_{fix}(T_m) = \sum_{i=0}^{\Delta-x} {\Delta-x \choose i} = 2^{\Delta-x} = 2^{n-\Delta-1}$$

A Special Case

Lemma

Let T be a tree with a single node v that has degree larger than 2. Let \mathcal{D} be the multi-set with the distances of all leaves to v. Then

$$E_{fix}(T)| = \sum_{S \subset \mathcal{D}_{*}|S| \leq \Delta/2} \prod_{s \in S} \mathbb{F}_{s} \prod_{s \in \mathcal{D} \setminus S} \mathbb{F}_{s-1}.$$

Sketch of Proof.

- Let P be the set of all ∆ paths from v to a leaf of T
- For $P \in \mathcal{P}$ let \hat{P} be an extension of P by one node. Let $\mathcal{P}_1 \subset \mathcal{P}$ with $|\mathcal{P}_1| \leq \Delta/2$
- Let $P_1 \in \mathcal{P}_1$ and $P_2 \in \mathcal{P} \setminus \mathcal{P}_1$. If $\hat{F}_{P_1} \in E_{fix}(\hat{P}_1)$ and $F_{P_2} \in E_{fix}(P_2)$ then $\hat{F}_{P_1} \cup F_{P_2} \in E_{fix}(T)$ and vice versa

A Special Case

Lemma

Let T be a 2-generalized star graph. Then $|E_{fix}(T)| \leq \mathbb{F}_{n-\lceil \Delta/2 \rceil}$.

Proof.

We use the lemma. If $\Delta \equiv 0(2)$ then

$$|E_{fix}(T)| = \sum_{i=0}^{\lfloor \Delta/2 \rfloor} \begin{pmatrix} \Delta \\ i \end{pmatrix} = \frac{1}{2} \left(2^{\Delta} + \begin{pmatrix} \Delta \\ \Delta/2 \end{pmatrix} \right) \le \mathbb{F}_{3\Delta/2+1} = \mathbb{F}_{n-\Delta/2},$$

otherwise $|E_{fix}(T)| = 2^{\Delta-1} \leq \mathbb{F}_{n-\lceil \Delta/2 \rceil}$.

General Case

Theorem

$$|E_{fix}(T)| \leq \mathbb{F}_{n-\lceil \Delta/2 \rceil}$$
 for a tree T with n nodes.

Sketch of Proof.

- Induction on n
- There exists edge (v, w) where v is a leaf and all neighbors of w but one are leaves
- If deg(w) > 2 then there exists a neighbor $u \neq v$ of w that is a leaf. Let $T_u = T \setminus u$.
- Then $|E_{fix}(T)| = |E_{fix}(T_u)|$ and since $\Delta(T_u) \ge \Delta(T) 1$ we have by induction

$$|E_{fix}(T)| = |E_{fix}(T_u)| \le \mathbb{F}_{n-1-\lceil \Delta(T_u)/2 \rceil} \le \mathbb{F}_{n-\lceil \Delta(T)/2 \rceil}$$

Hence, we assume deg(w) = 2

General Case

Proof contd.

- Let $u \neq v$ be 2^{nd} neighbor of w. Denote by T_v (resp. T_w) the tree $T \setminus v$ (resp. $T \setminus \{v, w\}$)
- Then $|E_{fix}(T)| \le |E_{fix}(T_v)| + |E_{fix}(T_w)|$
- If there exists a node different from u with degree Δ then by induction

$$|\mathcal{E}_{fix}(T)| \leq \mathbb{F}_{n-1-\lceil \Delta/2 \rceil} + \mathbb{F}_{n-2-\lceil \Delta/2 \rceil} = \mathbb{F}_{n-\lceil \Delta/2 \rceil}$$

• Assume that u is the only node with degree Δ . Repeating above argument shows that T is 2-generalized star graph

• Hence,
$$|E_{fix}(T)| \leq \mathbb{F}_{n-\lceil \Delta/2 \rceil}$$
 by above Lemma

Conjecture

• Let $\tau_{n,\Delta} := \max\{|E_{fix}(T)| \mid T \text{ is a tree with } n \text{ nodes and maximal degree } \Delta\}$

Conjecture 1 $\tau_{n,\Delta} = \tau_{n-1,\Delta} + \tau_{n-2,\Delta}$ for $\Delta < (n-1)/2$.

Lower Bounds

Theorem

Let T be a tree. If the tree obtained from T by removing all leaves has r inner nodes, then

$$|E_{\text{fix}}(T)| \ge 2^{r/2}.$$

If T has diameter D, then

 $|E_{fix}(T)| \geq \mathbb{F}_D.$

There are trees for which $|E_{fix}(T)|$ is much larger than \mathbb{F}_D

$$|E_{fix}(T)| = \mathbb{F}_D \mathbb{F}_{n-D-1} + \mathbb{F}_h \mathbb{F}_{D-h} \mathbb{F}_{n-D-2}$$

Conjecture

Conjecture 2

Except for a finite number of cases for each combination of *n* and *D* there exists a star-like graph that maximizes the number of fixed points

A tree with 32 nodes and diameter 7 with 181376 fixed points. All other trees with 32 nodes and diameter 7 have less fixed points.

Pure 2-Cycles

Characterizing Pure 2-Cycles

- Let T = (V, E) be a tree
- $F \subseteq E$ is called \mathcal{P} -legal if $2deg_F(v) < deg(v)$ for each $v \in V$
- Let *E*_{pure}(*T*) be the set of all *P*-*legal* subsets of *E*(*T*)

Theorem (Turau 2022)

 $|E_{pure}(T)| = |\mathcal{P}_{\mathcal{M}}(T)^+|$

```
Since E_{pure}(T) \subseteq E_{fix}(T) we have |\mathcal{P}_{\mathcal{M}}(T)| \leq |\mathcal{F}_{\mathcal{M}}(T)| \leq 2\mathbb{F}_{n-\lceil \Delta/2 \rceil}
```

Theorem

The number of pure 2-cycles of a tree with n nodes and maximal node degree Δ can be computed in time $O(n\Delta)$.

Example

- $E_{pure}(T_2) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, c\}\}$
- Pure 2-cycle for *F* = {*a*, *c*}

Pure 2-Cycles

Counting Pure 2-cycles of Trees

Theorem

A tree with maximal degree Δ has at most min $(2^{n-\Delta}, 2\mathbb{F}_{\lfloor n/2 \rfloor})$ pure 2-cycles.

Theorem

Let T a tree with n nodes, diameter D, and maximal degree Δ .

- 1. If $2D \ge n$ then $|E_{pure}(T)| \le \mathbb{F}_{n-D}$
- 2. If $n < 2\Delta + 1$ then $|E_{pure}(T)| \le 2^{\lfloor \frac{n-\Delta-1}{2} \rfloor}$

These bound are sharp.

Conclusion

Conclusion & Outlook

- Contributions
 - Counting fixed points for general cellular automata is #P-complete
 - For tree cellular automata based on minority/majority rule problem solvable in time O(Δn)
 - Upper and lower bounds for number of fixed points and pure 2-cycles
- Open problems
 - Other classes of graphs for which problem solvable in polynomial time
 - Counting configurations with no predecessor (garden of Eden)

Counting Fixed Points and Pure 2-Cycles of Tree Cellular Automata

Volker Turau

LATIN

Professor

Phone +49 / (0)40 428 78 3530 e-Mail turau@tuhh.de http://www.ti5.tu-harburg.de/staff/turau

Institute of Telematics Hamburg University of Technology TUHH