print page

Florian Meyer

Picture of Florian Meyer
Florian Meyer
Room 4.087, building E
Am Schwarzenberg-Campus 3
21073 Hamburg
e-mail

Projects

Publications

Florian Meyer, Phil Malessa, Jan Diercks and Volker Turau. Are Group Acknowledgements Worth Anything in IEEE 802.15.4 DSME: A Comparative Analysis. In Accepted for Publication in Proceedings of 5th International Conference on Cloud and Internet of Things, CIoT '22, IEEE, March 2022. Marrakesh, Morocco.
@InProceedings{Telematik_CIoT_2021, author = {Florian Meyer and Phil Malessa and Jan Diercks and Volker Turau}, title = {Are Group Acknowledgements Worth Anything in IEEE 802.15.4 DSME: A Comparative Analysis}, booktitle = {Accepted for Publication in Proceedings of 5th International Conference on Cloud and Internet of Things, CIoT '22}, pages = , publisher = {IEEE}, day = {28-30}, month = mar, year = 2022, location = {Marrakesh, Morocco}, }
Florian Meyer and Volker Turau. QMA: A Resource-efficient, Q-learning-based Multiple Access Scheme for the IIoT. In 2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS), IEEE, October 2021, pp. 864–874. Washington DC, USA / Virtually.
@InProceedings{Telematik_icdcs_2021, author = {Florian Meyer and Volker Turau}, title = {QMA: A Resource-efficient, Q-learning-based Multiple Access Scheme for the IIoT}, booktitle = {2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS)}, pages = {864-874}, publisher = {IEEE}, day = {7-10}, month = oct, year = 2021, location = {Washington DC, USA / Virtually}, }
Abstract: Many MAC protocols for the Industrial Internet of Things, such as IEEE 802.15.4 and its extensions, require contention-based channel access for management traffic, e.g., for slot (de)allocations and broadcasts. In many cases, subtle but hidden patterns characterize this secondary traffic, but present contention-based protocols are unaware of these patterns and therefore cannot exploit them. Especially in dense networks, these protocols often do not provide sufficient throughput and reliability for primary traffic, i.e., they cannot allocate transmission slots in time. In this paper, we propose QMA, a contention-based multiple access scheme based on Q-learning. It dynamically adjusts transmission times to avoid collisions by learning patterns in contention-based traffic. We show that QMA solves the hidden node problem without the overhead for RTS/CTS messages and, for example, increases throughput from 10 packets/s to 50 packets/s in a hidden three-node scenario without sacrificing reliability. Additionally, QMA's scalability is evaluated in a realistic scenario for slot (de)allocation in IEEE 802.15.4 DSME, where it achieves up to twice more slot (de)allocations per second.
Florian Meyer, Ivonne Andrea Mantilla-Gonzales and Volker Turau. New CAP Reduction Mechanisms for IEEE 802.15.4 DSME to SupportFluctuating Traffic in IoT Systems. In Proceedings of 19th International Conference on Ad Hoc Networks and Wireless (AdHoc-Now 2020), Springer, October 2020, pp. 159–179. Bari, Italy / Virtually.
@InProceedings{Telematik_adhocnow_2020, author = {Florian Meyer and Ivonne Andrea Mantilla-Gonzales and Volker Turau}, title = {New CAP Reduction Mechanisms for IEEE 802.15.4 DSME to SupportFluctuating Traffic in IoT Systems}, booktitle = {Proceedings of 19th International Conference on Ad Hoc Networks and Wireless (AdHoc-Now 2020)}, pages = {159-179}, publisher = {Springer}, day = {19-21}, month = oct, year = 2020, location = {Bari, Italy / Virtually}, }
Abstract: In 2015, the IEEE 802.15.4 standard was expanded by theDeterministic and Synchronous Multi-Channel Extension (DSME) toincrease reliability, scalability and energy-efficiency in industrial appli-cations. The extension offers a TDMA/FDMA-based channel access,where time is divided into two alternating phases, a contention accessperiod (CAP) and a contention free period (CFP). During the CAP, transmission slots can be allocated offering an exclusive access to theshared medium during the CFP. The fractionτof CFP’s time slots ina dataframe is a critical value, because it directly influences agility andthroughput. A high throughput demands that the CFP is much longerthan the CAP, i.e., a high value ofτ, because application data is only sentduring the CFP. High agility is given if the expected waiting time to senda CAP message is short and that the length of the CAPs are long enoughto accommodate necessary GTS negotiations, i.e., a low value ofτ. OnceDSME is configured according to the needs of an application,τcan onlyassume one of two values and cannot be changed at run-time. In thispaper, we propose two extensions of DSME that allow to adoptτto thecurrent traffic pattern. We show theoretically and through simulationsthat the proposed extensions provide a high degree of responsiveness totraffic fluctuations while keeping the throughput high.

The complete list of publications is available separately.

Supervised Theses

Completed Theses