print page

Florian Meyer

Picture of Florian Meyer
Florian Meyer
Room 4.085, building E
Am Schwarzenberg-Campus 3
21073 Hamburg
phone+49 40 42878 - 3746
fax+49 40 427 - 3 - 10456
e-mail

Teaching

Projects

Publications

Florian Meyer, Ivonne Andrea Mantilla-Gonzales and Volker Turau. New CAP Reduction Mechanisms for IEEE 802.15.4 DSME to SupportFluctuating Traffic in IoT Systems. In Proceedings of 19th International Conference on Ad Hoc Networks and Wireless (AdHoc-Now 2020), Springer, October 2020, pp. 159–179. Bari, Italy / Virtually.
@InProceedings{Telematik_adhocnow_2020, author = {Florian Meyer and Ivonne Andrea Mantilla-Gonzales and Volker Turau}, title = {New CAP Reduction Mechanisms for IEEE 802.15.4 DSME to SupportFluctuating Traffic in IoT Systems}, booktitle = {Proceedings of 19th International Conference on Ad Hoc Networks and Wireless (AdHoc-Now 2020)}, pages = {159-179}, publisher = {Springer}, day = {19-21}, month = oct, year = 2020, location = {Bari, Italy / Virtually}, }
Abstract: In 2015, the IEEE 802.15.4 standard was expanded by theDeterministic and Synchronous Multi-Channel Extension (DSME) toincrease reliability, scalability and energy-efficiency in industrial appli-cations. The extension offers a TDMA/FDMA-based channel access,where time is divided into two alternating phases, a contention accessperiod (CAP) and a contention free period (CFP). During the CAP, transmission slots can be allocated offering an exclusive access to theshared medium during the CFP. The fractionτof CFP’s time slots ina dataframe is a critical value, because it directly influences agility andthroughput. A high throughput demands that the CFP is much longerthan the CAP, i.e., a high value ofτ, because application data is only sentduring the CFP. High agility is given if the expected waiting time to senda CAP message is short and that the length of the CAPs are long enoughto accommodate necessary GTS negotiations, i.e., a low value ofτ. OnceDSME is configured according to the needs of an application,τcan onlyassume one of two values and cannot be changed at run-time. In thispaper, we propose two extensions of DSME that allow to adoptτto thecurrent traffic pattern. We show theoretically and through simulationsthat the proposed extensions provide a high degree of responsiveness totraffic fluctuations while keeping the throughput high.
Florian Meyer, Ivonne Mantilla and Volker Turau. Sending Multiple Packets per Guaranteed Time Slot in IEEE 802.15.4 DSME: Analysis and Evaluation. Internet Technology Letters, April 2020.
@Article{Telematik__2020, author = {Florian Meyer and Ivonne Mantilla and Volker Turau}, title = {Sending Multiple Packets per Guaranteed Time Slot in IEEE 802.15.4 DSME: Analysis and Evaluation}, pages = , journal = {Internet Technology Letters}, publisher = {Wiley Online Scientific}, month = apr, year = 2020, }
Abstract: Coping with bursty traffic is a common yet challenging task in the industrial Internet of Things (IoT). For example, 6LoWPAN 1 is a standard that defines the integration of LoWPAN 2 with IPv6, by fragmenting large IPv6 packets into several smaller MAC‐layer packets. Therefore, it is necessary to envision message delivery mechanisms, which provide support for highly varying traffic. In this paper, we analyze sending multiple packets per guaranteed time slot (GTS) in IEEE 802.15.4 DSME to alleviate traffic during the contention‐access period (CAP) and increase the reliability in scenarios with bursty traffic. The evaluation shows that increasing parameter SO extends the network throughput beyond default operating conditions and also provides overprovisioning beneficial for delivering sporadic messages. A comparison with the transmission of a single packet per GTS demonstrates a reduction of the total number of transmitted CAP messages by 99% while increasing the packet reception ratio by 48% for bursts with 20 packets.
Florian Meyer and Volker Turau. Towards Delay-Minimal Scheduling through Reinforcement Learning in IEEE 802.15.4 DSME. In Proceedings of the First GI/ITG KuVS Fachgespräche Machine Learning and Networking, February 2020. München, Germany.
@InProceedings{Telematik_meyer_FGMLVS, author = {Florian Meyer and Volker Turau}, title = {Towards Delay-Minimal Scheduling through Reinforcement Learning in IEEE 802.15.4 DSME}, booktitle = {Proceedings of the First GI/ITG KuVS Fachgespr{\"a}che Machine Learning and Networking}, pages = , publisher = {}, day = {20-21}, month = feb, year = 2020, location = {M{\"u}nchen, Germany}, }
Abstract: The rise of wireless sensor networks (WSNs) in industrial applications imposes novel demands on existing wire- less protocols. The deterministic and synchronous multi-channel extension (DSME) is a recent amendment to the IEEE 802.15.4 standard, which aims for highly reliable, deterministic traffic in these industrial environments. It offers TDMA-based channel access, where slots are allocated in a distributed manner. In this work, we propose a novel scheduling algorithm for DSME which minimizes the delay in time-critical applications by employing reinforcement learning (RL) on deep neural networks (DNN).

The complete list of publications is available separately.

Supervised Theses

Open Theses

Ongoing Theses

Completed Theses