print page

Florian Meyer

Picture of Florian Meyer
Florian Meyer
Room 4.085, building E
Am Schwarzenberg-Campus 3
21073 Hamburg
phone+49 40 42878 - 3746
fax+49 40 427 - 3 - 10456
e-mail

Teaching

Projects

Publications

Florian Meyer, Ivonne Mantilla and Volker Turau. Sending Multiple Packets per Guaranteed Time Slot in IEEE 802.15.4 DSME: Analysis and Evaluation. Internet Technology Letters, April 2020.
@Article{Telematik__2020, author = {Florian Meyer and Ivonne Mantilla and Volker Turau}, title = {Sending Multiple Packets per Guaranteed Time Slot in IEEE 802.15.4 DSME: Analysis and Evaluation}, pages = , journal = {Internet Technology Letters}, publisher = {Wiley Online Scientific}, month = apr, year = 2020, }
Abstract: Coping with bursty traffic is a common yet challenging task in the industrial Internet of Things (IoT). For example, 6LoWPAN 1 is a standard that defines the integration of LoWPAN 2 with IPv6, by fragmenting large IPv6 packets into several smaller MAC‐layer packets. Therefore, it is necessary to envision message delivery mechanisms, which provide support for highly varying traffic. In this paper, we analyze sending multiple packets per guaranteed time slot (GTS) in IEEE 802.15.4 DSME to alleviate traffic during the contention‐access period (CAP) and increase the reliability in scenarios with bursty traffic. The evaluation shows that increasing parameter SO extends the network throughput beyond default operating conditions and also provides overprovisioning beneficial for delivering sporadic messages. A comparison with the transmission of a single packet per GTS demonstrates a reduction of the total number of transmitted CAP messages by 99% while increasing the packet reception ratio by 48% for bursts with 20 packets.
Florian Meyer and Volker Turau. Towards Delay-Minimal Scheduling through Reinforcement Learning in IEEE 802.15.4 DSME. Technical Report, February 2020.
@TechReport{Telematik_meyer_FGMLVS, author = {Florian Meyer and Volker Turau}, title = {Towards Delay-Minimal Scheduling through Reinforcement Learning in IEEE 802.15.4 DSME}, booktitle = {Proceedings of the 1st GI/ITG KuVS Fachgespr{\"a}che Machine Learning and Networking}, pages = , publisher = {}, day = {20-21}, month = feb, year = 2020, location = {M{\"u}nchen, Germany}, }
Abstract: The rise of wireless sensor networks (WSNs) in industrial applications imposes novel demands on existing wire- less protocols. The deterministic and synchronous multi-channel extension (DSME) is a recent amendment to the IEEE 802.15.4 standard, which aims for highly reliable, deterministic traffic in these industrial environments. It offers TDMA-based channel access, where slots are allocated in a distributed manner. In this work, we propose a novel scheduling algorithm for DSME which minimizes the delay in time-critical applications by employing reinforcement learning (RL) on deep neural networks (DNN).
Florian Meyer, Ivonne Andrea Mantilla-Gonzales, Florian Kauer and Volker Turau. Performance Analysis of the Slot Allocation Handshake in IEEE 802.15.4 DSME. In Proceedings of 18th International Conference on Ad Hoc Networks and Wireless (AdHoc-Now 2019), Springer, October 2019, pp. 102–117. Luxembourg.
@InProceedings{Telematik_adhocnow_2019, author = {Florian Meyer and Ivonne Andrea Mantilla-Gonzales and Florian Kauer and Volker Turau}, title = {Performance Analysis of the Slot Allocation Handshake in IEEE 802.15.4 DSME}, booktitle = {Proceedings of 18th International Conference on Ad Hoc Networks and Wireless (AdHoc-Now 2019)}, pages = {102-117}, publisher = {Springer}, day = {1-3}, month = oct, year = 2019, location = {Luxembourg}, }
Abstract: Wireless mesh networks using IEEE 802.15.4 are getting increasingly popular for industrial applications because of low energy consumption and low maintenance costs. The IEEE 802.15.4 standard introduces DSME (Deterministic and Synchronous Multi-channel Extension). DSME uses time-slotted channel access to guarantee timely data delivery, multi-channel communication, and frequency hopping to mitigate the effects of external interferences. A distinguishing feature of DSME is its flexibility and adaptability to time-varying network traffic and to changes in the network topology. In this paper we evaluate the ability of DSME to adapt to time-varying network traffic. We examine the limits for slot allocation rates for different topologies. The evaluation is performed with openDSME, an open-source implementation of DSME.

The complete list of publications is available separately.

Supervised Theses

Ongoing Theses

Completed Theses