Seite drucken

Publikationen

Zeitschriftenartikel | Konferenzbeiträge | Technische Berichte

Zeitschriftenartikel

Ivonne Mantilla González, Meyer Florian und Volker Turau. A Comprehensive Performance Comparison of IEEE 802.15.4 DSME and TSCH in a Realistic IoT Scenario for Industrial Applications. ACM Transactions on Internet of Things, 1–30, Juni 2023.
@Article{ACM Transactions on Internet of Things_2023, author = {Ivonne Mantilla González and Meyer Florian and Volker Turau}, title = {A Comprehensive Performance Comparison of IEEE 802.15.4 DSME and TSCH in a Realistic IoT Scenario for Industrial Applications}, pages = {1-30}, journal = {ACM Transactions on Internet of Things}, publisher = {Association for Computing Machinery}, month = jun, year = 2023, }
Abstract: In the Industrial Internet of Things (i.e., IIoT), the standardization of open technologies and protocols has achieved seamless data exchange between machines and other physical systems from different manufacturers. At the MAC sublayer, the industry-standard protocols IEEE 802.15.4 Time Slot Channel Hopping (TSCH) and Deterministic and Synchronous Multi-channel Extension (DSME) show promising properties for high adaptability and dynamically changing traffic. However, performance comparison between these MAC protocols rarely has gone beyond a simulation phase. This work presents the results of such a comparison on physically deployed networks using the facilities of the FIT-IoTLab. The evaluation includes fully implementing an IIoT protocol stack based on MQTT in Contiki-NG. It comprises the integration of DSME as part of Contiki-NG’s software stack through OpenDSME, the only publicly available implementation of DSME. Results show that both protocols suit IIoT applications, particularly for data collection. The comparison between TSCH and DSME also includes an evaluation of distributed schedulers for both MAC modes and one autonomous scheduler for TSCH within a UDP protocol stack.
Florian Meyer, Ivonne Mantilla und Volker Turau. Sending Multiple Packets per Guaranteed Time Slot in IEEE 802.15.4 DSME: Analysis and Evaluation. Internet Technology Letters, April 2020.
@Article{Telematik__2020, author = {Florian Meyer and Ivonne Mantilla and Volker Turau}, title = {Sending Multiple Packets per Guaranteed Time Slot in IEEE 802.15.4 DSME: Analysis and Evaluation}, pages = , journal = {Internet Technology Letters}, publisher = {Wiley Online Scientific}, month = apr, year = 2020, }
Abstract: Coping with bursty traffic is a common yet challenging task in the industrial Internet of Things (IoT). For example, 6LoWPAN 1 is a standard that defines the integration of LoWPAN 2 with IPv6, by fragmenting large IPv6 packets into several smaller MAC‐layer packets. Therefore, it is necessary to envision message delivery mechanisms, which provide support for highly varying traffic. In this paper, we analyze sending multiple packets per guaranteed time slot (GTS) in IEEE 802.15.4 DSME to alleviate traffic during the contention‐access period (CAP) and increase the reliability in scenarios with bursty traffic. The evaluation shows that increasing parameter SO extends the network throughput beyond default operating conditions and also provides overprovisioning beneficial for delivering sporadic messages. A comparison with the transmission of a single packet per GTS demonstrates a reduction of the total number of transmitted CAP messages by 99% while increasing the packet reception ratio by 48% for bursts with 20 packets.

Konferenzbeiträge

Florian Meyer, Phil Malessa, Jan Diercks und Volker Turau. Are Group Acknowledgements Worth Anything in IEEE 802.15.4 DSME: A Comparative Analysis. In In Proceedings of 5th International Conference on Cloud and Internet of Things, CIoT '22, IEEE, März 2022, pp. 114–121. Marrakesh, Morocco.
@InProceedings{Telematik_CIoT_2021, author = {Florian Meyer and Phil Malessa and Jan Diercks and Volker Turau}, title = {Are Group Acknowledgements Worth Anything in IEEE 802.15.4 DSME: A Comparative Analysis}, booktitle = {In Proceedings of 5th International Conference on Cloud and Internet of Things, CIoT '22}, pages = {114-121}, publisher = {IEEE}, day = {28-30}, month = mar, year = 2022, location = {Marrakesh, Morocco}, }
Abstract: For data collection scenarios in the industrial Internet of Things, wireless communication offers a cost-effective and easy-to-deploy alternative to wired networks. Especially when data needs to be forwarded via multiple battery-powered nodes to a gateway for analysis in the cloud, high energy efficiency and reliability are required. IEEE 802.15.4 DSME acknowledges every packet individually (ACK), imposing an overhead for each transmitted packet and increasing energy consumption. In networks with little interference, it may thus be beneficial to aggregate ACKs for multiple nodes and broadcast them in a compressed format. This paper compares different of these group acknowledgment (GACK) schemes in best-case and worst-case scenarios and proposes novel GACK schemes to examine whether GACKs constitute a viable alternative to regular ACKs. Results indicate that GACKs can provide a 17% higher reliability than regular ACKs in a best-case scenario. On the other hand, they reduced reliability by at least 15% in comparison to regular ACKs in all other scenarios. Experiments on hardware do not indicate lower energy consumption.
Florian Meyer und Volker Turau. QMA: A Resource-efficient, Q-learning-based Multiple Access Scheme for the IIoT. In 2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS), IEEE, Oktober 2021, pp. 864–874. Washington DC, USA / Virtually.
@InProceedings{Telematik_icdcs_2021, author = {Florian Meyer and Volker Turau}, title = {QMA: A Resource-efficient, Q-learning-based Multiple Access Scheme for the IIoT}, booktitle = {2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS)}, pages = {864-874}, publisher = {IEEE}, day = {7-10}, month = oct, year = 2021, location = {Washington DC, USA / Virtually}, }
Abstract: Many MAC protocols for the Industrial Internet of Things, such as IEEE 802.15.4 and its extensions, require contention-based channel access for management traffic, e.g., for slot (de)allocations and broadcasts. In many cases, subtle but hidden patterns characterize this secondary traffic, but present contention-based protocols are unaware of these patterns and therefore cannot exploit them. Especially in dense networks, these protocols often do not provide sufficient throughput and reliability for primary traffic, i.e., they cannot allocate transmission slots in time. In this paper, we propose QMA, a contention-based multiple access scheme based on Q-learning. It dynamically adjusts transmission times to avoid collisions by learning patterns in contention-based traffic. We show that QMA solves the hidden node problem without the overhead for RTS/CTS messages and, for example, increases throughput from 10 packets/s to 50 packets/s in a hidden three-node scenario without sacrificing reliability. Additionally, QMA's scalability is evaluated in a realistic scenario for slot (de)allocation in IEEE 802.15.4 DSME, where it achieves up to twice more slot (de)allocations per second.
Florian Meyer, Ivonne Andrea Mantilla-Gonzales und Volker Turau. New CAP Reduction Mechanisms for IEEE 802.15.4 DSME to SupportFluctuating Traffic in IoT Systems. In Proceedings of 19th International Conference on Ad Hoc Networks and Wireless (AdHoc-Now 2020), Springer, Oktober 2020, pp. 159–179. Bari, Italy / Virtually.
@InProceedings{Telematik_adhocnow_2020, author = {Florian Meyer and Ivonne Andrea Mantilla-Gonzales and Volker Turau}, title = {New CAP Reduction Mechanisms for IEEE 802.15.4 DSME to SupportFluctuating Traffic in IoT Systems}, booktitle = {Proceedings of 19th International Conference on Ad Hoc Networks and Wireless (AdHoc-Now 2020)}, pages = {159-179}, publisher = {Springer}, day = {19-21}, month = oct, year = 2020, location = {Bari, Italy / Virtually}, }
Abstract: In 2015, the IEEE 802.15.4 standard was expanded by theDeterministic and Synchronous Multi-Channel Extension (DSME) toincrease reliability, scalability and energy-efficiency in industrial appli-cations. The extension offers a TDMA/FDMA-based channel access,where time is divided into two alternating phases, a contention accessperiod (CAP) and a contention free period (CFP). During the CAP, transmission slots can be allocated offering an exclusive access to theshared medium during the CFP. The fractionτof CFP’s time slots ina dataframe is a critical value, because it directly influences agility andthroughput. A high throughput demands that the CFP is much longerthan the CAP, i.e., a high value ofτ, because application data is only sentduring the CFP. High agility is given if the expected waiting time to senda CAP message is short and that the length of the CAPs are long enoughto accommodate necessary GTS negotiations, i.e., a low value ofτ. OnceDSME is configured according to the needs of an application,τcan onlyassume one of two values and cannot be changed at run-time. In thispaper, we propose two extensions of DSME that allow to adoptτto thecurrent traffic pattern. We show theoretically and through simulationsthat the proposed extensions provide a high degree of responsiveness totraffic fluctuations while keeping the throughput high.
Florian Meyer, Ivonne Andrea Mantilla-Gonzales, Florian Kauer und Volker Turau. Performance Analysis of the Slot Allocation Handshake in IEEE 802.15.4 DSME. In Proceedings of 18th International Conference on Ad Hoc Networks and Wireless (AdHoc-Now 2019), Springer, Oktober 2019, pp. 102–117. Luxembourg.
@InProceedings{Telematik_adhocnow_2019, author = {Florian Meyer and Ivonne Andrea Mantilla-Gonzales and Florian Kauer and Volker Turau}, title = {Performance Analysis of the Slot Allocation Handshake in IEEE 802.15.4 DSME}, booktitle = {Proceedings of 18th International Conference on Ad Hoc Networks and Wireless (AdHoc-Now 2019)}, pages = {102-117}, publisher = {Springer}, day = {1-3}, month = oct, year = 2019, location = {Luxembourg}, }
Abstract: Wireless mesh networks using IEEE 802.15.4 are getting increasingly popular for industrial applications because of low energy consumption and low maintenance costs. The IEEE 802.15.4 standard introduces DSME (Deterministic and Synchronous Multi-channel Extension). DSME uses time-slotted channel access to guarantee timely data delivery, multi-channel communication, and frequency hopping to mitigate the effects of external interferences. A distinguishing feature of DSME is its flexibility and adaptability to time-varying network traffic and to changes in the network topology. In this paper we evaluate the ability of DSME to adapt to time-varying network traffic. We examine the limits for slot allocation rates for different topologies. The evaluation is performed with openDSME, an open-source implementation of DSME.
Florian Meyer und Volker Turau. Delay-Bounded Scheduling in IEEE 802.15.4e DSME using Linear Programming. In Proceedings of 15th International Conference on Distributed Computing in Sensor Systems (DCOSS), Mai 2019, pp. 659–666. Santorini, Greece.
@InProceedings{Telematik_ISIoT_2019, author = {Florian Meyer and Volker Turau}, title = {Delay-Bounded Scheduling in IEEE 802.15.4e DSME using Linear Programming}, booktitle = {Proceedings of 15th International Conference on Distributed Computing in Sensor Systems (DCOSS)}, pages = {659-666}, day = {29-31}, month = may, year = 2019, location = {Santorini, Greece}, }
Abstract: The Deterministic and Synchronous Multi-Channel Extension (DSME) protocol is a recent amendment to the IEEE 802.15.4 standard. It combines contention-based and time-division medium access, offers channel diversity, and is aimed to support IIoT applications with stringent requirements in terms of timeliness and reliability. In this paper, we show how to configure DSME for a given data collection task. This includes the definition of the slot and frame length and the slot and channel schedule. We formulate different scheduling strategies as linear programs minimizing latency and energy. We verify our results through theoretical analysis and simulations and compare them with state-of-the-art scheduling algorithms. The results indicate a reduced delay of up to 80% for deep networks while also increasing reliability. Additionally, the proposed scheduling strategies significantly reduce the required buffer size.
Florian Kauer, Florian Meyer und Volker Turau. A Holistic Solution for Reliable Over-the-Air Software Updates in Large Industrial Plants. In Proceedings of the 13th Workshop on Intelligent Solutions in Embedded Systems (WISES 2017), Juni 2017, pp. 29–34. Hamburg, Germany.
@InProceedings{Telematik_WISES_2017, author = {Florian Kauer and Florian Meyer and Volker Turau}, title = {A Holistic Solution for Reliable Over-the-Air Software Updates in Large Industrial Plants}, booktitle = {Proceedings of the 13th Workshop on Intelligent Solutions in Embedded Systems (WISES 2017)}, pages = {29-34}, day = {12-13}, month = jun, year = 2017, location = {Hamburg, Germany}, }
Abstract: In cyber-physical systems, such as modern industrial plants, complex software is an essential part that enables cost-effective and flexible operation. However, this complexity increases the probability of problems that only reveal themselves after the deployment. This is even more important if security aspects are involved. Therefore, providing the possibility for software updates is an important building block in the design of industrial plants. This paper presents a holistic concept for software updates in an industrial plant with thousands of wirelessly connected embedded devices. Using wireless technology imposes additional difficulties in terms of data rate, packet size and reliability that have to be addressed in particular. The contribution also includes an analytical model to estimate the time until a new firmware is distributed. Evaluations carried out on hardware as well as in the OMNeT++ simulator demonstrate the applicability and scalability of the proposed approach.

Technische Berichte

Florian Meyer und Volker Turau. Towards Delay-Minimal Scheduling through Reinforcement Learning in IEEE 802.15.4 DSME. In Proceedings of the First GI/ITG KuVS Fachgespräche Machine Learning and Networking, Februar 2020. München, Germany.
@InProceedings{Telematik_meyer_FGMLVS, author = {Florian Meyer and Volker Turau}, title = {Towards Delay-Minimal Scheduling through Reinforcement Learning in IEEE 802.15.4 DSME}, booktitle = {Proceedings of the First GI/ITG KuVS Fachgespr{\"a}che Machine Learning and Networking}, pages = , publisher = {}, day = {20-21}, month = feb, year = 2020, location = {M{\"u}nchen, Germany}, }
Abstract: The rise of wireless sensor networks (WSNs) in industrial applications imposes novel demands on existing wire- less protocols. The deterministic and synchronous multi-channel extension (DSME) is a recent amendment to the IEEE 802.15.4 standard, which aims for highly reliable, deterministic traffic in these industrial environments. It offers TDMA-based channel access, where slots are allocated in a distributed manner. In this work, we propose a novel scheduling algorithm for DSME which minimizes the delay in time-critical applications by employing reinforcement learning (RL) on deep neural networks (DNN).