Seite drucken

CyEntEE

Cyber Physical Energy Systems – Sustainability, Resilience and Economics

Mitarbeiter Dr. Marcus Venzke
Beginn 1. Oktober 2020
Finanzierung I3 Programm der TUHH und Hamburger Behörde für Wissenschaft, Forschung, Gleichstellung und Bezirke (BWFGB)

Projektbeschreibung

Das CyEntEE-Projekt hat zum Ziel, ein innovatives Konzept für ein cyber-physikalisch integriertes Energiesystem zu entwickeln. Dieses Konzept soll ganzheitlich und mit völlig neuartigen Aspekten, insbesondere in Bezug auf die funktionale, informations- und kommunikationstechnische (IKT-) Kopplung, umgesetzt werden. Die Auslegung und der Betrieb des Gesamtsystems sollen Nachhaltigkeit, Wirtschaftlichkeit und insbesondere auch Resilienz gewährleisten. Der Begriff Resilienz bezieht sich dabei nicht nur auf die technischen Teilsysteme, sondern explizit auch auf die IKT-bezogenen Teilsysteme.

Projektpartner

Publikationen

Marcus Venzke, Yevhenii Shudrenko, Amine Youssfi, Tom Steffen, Volker Turau und Christian Becker. Co-Simulation of a Cellular Energy System. Energies, 16(17), August 2023.
@Article{Energies_2023, author = {Marcus Venzke and Yevhenii Shudrenko and Amine Youssfi and Tom Steffen and Volker Turau and Christian Becker}, title = {Co-Simulation of a Cellular Energy System}, pages = , journal = {Energies}, volume = {16}, number = {17}, publisher = {MDPI}, month = aug, year = 2023, }
Abstract: The concept of cellular energy systems of the German Association for Electrical, Electronic and Information Technologies (VDE) proposes sector coupled energy networks for energy transition based on cellular structures. Its decentralized control approach radically differs from that of existing networks. Deeply integrated information and communications technologies (ICT) open opportunities for increased resilience and optimizations. The exploration of this concept requires a comprehensive simulation tool. In this paper, we investigate simulation techniques for cellular energy systems and present a concept based on co-simulation. We combine simulation tools developed for different domains. A classical tool for studying physical aspects of energy systems (Modelica, TransiEnt library) is fused with a state-of-the-art communication networks simulator (OMNeT++) via the standardized functional mock-up interface (FMI). New components, such as cell managers, aggregators, and markets, are integrated via remote procedure calls. A special feature of our concept is that the communication simulator coordinates the co-simulation as a master and integrates other components via a proxy concept. Model consistency across different domains is achieved by a common description of the energy system. Evaluation proves the feasibility of the concept and shows simulation speeds about 20 times faster than real time for a cell with 111 households.
Kai Hoth, Tom Steffen, Béla Wiegel, Amine Youssfi, Davood Babazadeh, Marcus Venzke, Christian Becker, Kathrin Fischer und Volker Turau. Holistic Simulation Approach for Optimal Operation of Smart Integrated Energy Systems under Consideration of Resilience, Economics and Sustainability. Infrastructures, 6(11), Oktober 2021.
@Article{MDPI_CyEntEE_Simulation_Smart_Energy_System_2021, author = {Kai Hoth and Tom Steffen and Béla Wiegel and Amine Youssfi and Davood Babazadeh and Marcus Venzke and Christian Becker and Kathrin Fischer and Volker Turau}, title = {Holistic Simulation Approach for Optimal Operation of Smart Integrated Energy Systems under Consideration of Resilience, Economics and Sustainability}, pages = , journal = {Infrastructures}, volume = {6}, number = {11}, publisher = {MDPI}, month = oct, year = 2021, }
Abstract: The intermittent energy supply from distributed resources and the coupling of different energy and application sectors play an important role for future energy systems. Novel operational concepts require the use of widespread and reliable Information and Communication Technology (ICT). This paper presents the approach of a research project that focuses on the development of an innovative operational concept for a Smart Integrated Energy System (SIES), which consists of a physical architecture, ICT and energy management strategies. The cellular approach provides the architecture of the physical system in combination with Transactive Control (TC) as the system’s energy management framework. Independent dynamic models for each component, the physical and digital system, operational management and market are suggested and combined in a newly introduced co-simulation platform to create a holistic model of the integrated energy system. To verify the effectiveness of the operational concept, energy system scenarios are derived and evaluation criteria are suggested which can be employed to evaluate the future system operations.

Studentische Arbeiten

Abgeschlossene Arbeiten