Machine Learning-based Positioning using Multivariate Time Series Classification for Factory Environments

Nisal Hemadasa*, Marcus Venzke*, Volker Turau*, Yanqiu Huang~

> * Hamburg University of Technology ~University of Twente

ONLINE & DOWNTOWN OKLAHOMA CITY, OK, USA OCTOBER 02-05, 2023 WWW.OKIPUBLISHING.COM SOF

IMARE

ECOMMERCE

HPO

Content

- Introduction: Indoor Positioning Systems
- Motivation: Indoor Positioning in Industrial Logistic Processes
- Proposed approach and Contributions
- Results
- Conclusion

2

Indoor Positioning Systems (IPS)

• Widely adopted in:

POWER

ENERGY

DATA

CYBERSECURITY | AI |

PROCESS

CLOUD

- Applications: manufacturing, logistics, sales, construction, etc.
- Technological forefronts: Industry 4.0, Smart Cities, etc.
- GPS doesn't function indoors robustly
- Existing technologies
 - Technology-wise: RSSI, magnetic, sound, visible light, inertial navigation
- Further classification under,
 - Technique-wise: proximity, vision, triangulation, fingerprinting, dead-reckoning, collaborative sensing
 - Algorithm-wise: square method, maximum likelihood method, deterministic or probabilistic method

⋗

Positioning of Goods in Industrial Logistic Processes

- Could be defined as a sub-problem of Indoor Positioning: Involves transporting goods in well-defined paths, e.g.,
 - Factory assembly lines

POWER

ENERGY

DATA | CYBERSECURITY

≥

PROCESS

- Locations in warehouses
- X-Y coordinates are not necessarily required

Proposed Approach

- Inspiration: localization and navigation capabilities of higher animals
- Using embedded sensors, with machine learning, for low-cost, privacy secured increased, object localization in industrial logistics processes
- **Problem definition**: Investigate the usage of,
 - Multivariate Time Series Classification (MTSC),
 - to find relative position of a know path in indoor environments,
 - using motion and ambience sensors, and
 - Machine Learning,

POWER

ENERGY

DATA

CYBERSE

0

URITY | AI |

PROCESS

CLOUD

- for low performance and low powered devices such as microcontrollers

Factory IPS as a MTSC Problem

SOFTWARE

ECOMMERCE

HPC

HEALTH

Ш

EARNINGIA

Advantages and Use-cases Advantages: No supplementary infrastructure needed (e.g., compared to RSSI-based methods), Privacy secured (e.g., compared to vision-based), No initial coordinates required and no accumulated error (e.g., compared to dead-reckoning), Not based on assumptions (e.g., Gaussian noise and linear motion)

POWER | ENERGY | DATA | CYBERSECURITY | AI | PROCESS | CLOUD

- Other possible application environments,
 - Tunnels,
 - Mining, etc.

Contributions

• Compare,

POWER |

ENERGY

DATA

CYBERSECURITY

≥

PROCESS

- potential ML models,
- for MTSC for motion-ambient dataset,
- targeting edge and tiny devices
- Models based on,
 - Multilayer Perceptron, Fully Convolutional Network (benchmarks for MTSC),
 - CNN-1D, CNN-2D (Variants of CNN and MLP)
 - LSTM, Bidirectional-LSTM (State of the art for high end edge devices),
 - Decision Trees, Random Forests (lightweight to fit MCUs)
- Criteria,
 - Accuracy,
 - Latency,
 - Memory Footprint
- Longer version of the paper in arxiv: https://doi.org/10.48550/arXiv.2308.11670

OCTOBER 02-05, 2023

Proposed Solution: Overview

SOFTWARE

ECOMMERCE

HPC

HEALTH

Ш

EARNING

Motion-Ambient Dataset: Collection

Three routes

POWER

ENERGY

| DATA | CYBERSECURITY

₽

PROCESS

- Path dynamics:
 - Indoors & outdoors
 - Stairs
 - Different terrains
 - Elevators
 - Ramps, etc.
- Include round trips

bridg

10

ONLINE & DOWNTOWN OKLAHOMA CITY, OK, USA OCTOBER 02-05, 2023 WWW.OKIPUBLISHING.COM

Motion-Ambient Dataset

Sensor measurements:

POWER | ENERGY | DATA | CYBERSECURITY | AI | PROCESS | CLOUD

IMU: (acceleration, rotation, mag. field) Temperature Humidity Pressure Spectrum

Route	Distance (m)	Rounds	Samples
1	470	115	1,597,657
2	233	180	1,439,903
3	327	115	1,597,657

Distances in km: ~135

Proposed Solution: Overview

OCTOBER 02-05, 2023

WWW.OKIPUBLISHING.COM

SOFTWARE

Results: Accuracy

13

Definition: Loc-score

ONLINE & DOWNTOWN OKLAHOMA CITY, OK, USA OCTOBER 02-05, 2023 WWW.OKIPUBLISHING.COM

POWER | ENERGY | DATA | CYBERSECURITY | AI | PROCESS | CLOUD

SOFTWARE ECOMMERCE HPC HEALTH Ш EARNINGIA

OkII

Results: Loc-score

SOFTWARE

ECOMMERCE

HEALTH

4

ELEARNINGIAI

Results: Latency

Results: Memory Footprint

ONLINE & DOWNTOWN OKLAHOMA CITY, OK, USA OCTOBER 02-05, 2023 WWW.OKIPUBLISHING.COM

POWER | ENERGY | DATA | CYBERSECURITY | AI | PROCESS | CLOUD

OKIP

Conclusion

- Using MTSC to find relative position of a know path in indoor environments
- Investigated the usage of promising ML methods targeted for edge and tiny devices to solve MTSC using motion and ambience sensors
- Introduction of novel Motion-Ambient dataset

POWER | ENERGY

| DATA| CYBERSECURITY | AI | PROCESS | CLOUD

Thank you

ONLINE & DOWNTOWN OKLAHOMA CITY, OK, USA OCTOBER 02-05, 2023 WWW.OKIPUBLISHING.COM

POWER | ENERGY | DATA | CYBERSECURITY | AI | PROCESS | CLOUD

Results: Accuracy vs Latency

SOFTWARE

ECOMMERCE

HPC

HEALTH

⊐

Ш

EARNINGIAI

Results: Accuracy vs Memory footprint

POWER | ENERGY | DATA | CYBERSECURITY | AI | PROCESS | CLOUD

Results: Memory footprint vs Latency

POWER | ENERGY | DATA | CYBERSECURITY | AI | PROCESS | CLOUD

