TDMA-Schemes for Tree-Routing in Data Intensive Wireless Sensor Networks

Volker Turau and Christoph Weyer

Institute of Telematics
Hamburg University of Technology

First Int. Workshop on Protocols and Algorithms for Reliable and Data Intensive Sensor Networks (PARIS)
Pisa, 2007
Sensor networks are increasingly used in applications where sensors periodically measure data with high frequency.

Problem

How to reliably transport high volumes of data through unreliable multi-hop networks.

- Difficulties derive from:
 - wireless communication
 - tight resources
 - malfunction of sensors

- Focus of this work: energy and memory efficiency
Motivation

Premises

- Stationary sensor network
- Sensing and forwarding phase
 - Sensing phase: Data is stored in persistent storage
 - Forwarding phase: Stored data is forwarded
- Nodes have fixed amount of buffer space
- Forwarding via routing tree

Data transmission problem (DTP)

Transport all data packets via a routing tree efficiently to sink

- Contribution of this work:
 An energy efficient solution of DTP based on TDMA
Idea: Exploit tree structure
Goal: No idle listening and low control packet overhead

Approach
- Nodes can only send packets to parents, which respond with an acknowledgment
- Nodes cannot proactively send packets to children
- Remedy against buffer overflow: Parents advise children to suspend sending if buffer is full (with acknowledgment)
- Realization with a TDMA protocol

Advantage: Nodes only listen when child is about to send packet
TDMA-Schemes

Approach

Type I: More than one node per slot
Type II: Exactly one node per slot
Type III: More slots than nodes

<table>
<thead>
<tr>
<th>Type</th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concurrent transmissions</td>
<td>possible</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Collisions</td>
<td>possible</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Setup of scheme</td>
<td>complex</td>
<td>simple</td>
<td>medium</td>
</tr>
<tr>
<td>Passing slots among nodes</td>
<td>not possible</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

Question

Which scheme is most suitable for DTP?
Goals

- Increase the sampling rate of sensors
 - Minimize total completion time and
 - Minimize buffer usage for packets in transit
- Algorithms must
 - handle different loads at different nodes
 - account for communication errors
Classical TDMA, Example

Minimum number of time slots for DTP for unlimited buffer:

$$\max_{x \text{ child of } S} s \sum_{i \in T_x} L_i$$

Problems:
- Hard to set up with small s
- Not completely free of collisions
- Once node has forwarded all packets, its slot is no longer used
- No straightforward way to reassign a slot
- Buffer requirements (children have more slots)
Simple slot assignment

No collisions (provided accurate time synchronization)

Nodes that have forwarded all data hand over slots to parents

Problem: Bottom-up style leads to more buffer overflow

Better solutions:
- A node keeps every other slot handed over by children, all other slots are passed on to parent
- A node keeps every $d + 1$ th slot (d depth of node)

Example
40 nodes
500 packets stored per node
Length of time slot 100 ms
Length of round 4 s
Buffer limit 1,000 packets
Simulation

Variant 1: All forwarded slots remain with parent
Variant 2: Every second forwarded slot remains with parent
Simulation

Variant 2: Every second forwarded slot remains with parent
Variant 3: A node keeps every $d + 1$ th forwarded slot
Advantage of 2nd alternative:
- If a node keeps a slot, all nodes on path to sink have already received an additional slot
- Total completion time is reduced
- Simple to implement
- Scheme does not consider individual loads and buffer sizes
Type III

- Principle: Number of assigned slots depends on slots of children and buffer load

 \[s_i = \lceil L_i/C \rceil + \sum_{j \in Ch(i)} s_j \]

- Example

- Comparison

<table>
<thead>
<tr>
<th>TDMA Scheme</th>
<th># time slots</th>
<th>buffer load (node 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 slots</td>
<td>1520</td>
<td>210</td>
</tr>
<tr>
<td>5 slots</td>
<td>1900</td>
<td>210</td>
</tr>
<tr>
<td>Type II</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>936</td>
<td>152</td>
</tr>
<tr>
<td>Type III</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C=30</td>
<td>1110</td>
<td>102</td>
</tr>
<tr>
<td>C=10</td>
<td>930</td>
<td>119</td>
</tr>
</tbody>
</table>
Slot assignment based on depth first search

Performance:
- DTP needs at most C rounds, provided no buffer overflow and no packet loss
- A round consists of $\sum_{i \in T^*} d(i) \lceil L_i/C \rceil$ slots
- Maximal buffer load of node i is $L_i + s_i - \lfloor L_i/C \rfloor$

Role of C:
- Buffer requirements rise when C gets smaller
- but completion time of DTP falls
Work on TDMA-schemes for DTP in data-intensive WSNs
Simple schemes that use slots exclusively are superior to classical schemes
Schemes of type II/III are faster and require less buffer
Type III schemes observe sizes of available buffer space
Current work: Simulation and field test of schemes II and III
TDMA-Schemes for Tree-Routing in Data Intensive Wireless Sensor Networks

Volker Turau and Christoph Weyer

Institute of Telematics
Hamburg University of Technology

First Int. Workshop on Protocols and Algorithms for Reliable and Data Intensive Sensor Networks (PARIS)
Pisa, 2007