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Abstract — The peculiarities of the aircraft monitoring and maintenance domain 
are described and shortcomings of the current monitoring methodology are re-
vealed. It is also shown why a new approach using computational intelligence 
models, as a replacement for the current BITE models, is paramount. In section 2 
a brief review of developments in computational intelligence research is given. 
After which we present the comprehensible hierarchical intelligent framework, as 
a conceptual non monolithic intelligent approach utilizing distributed CI models 
for monitoring. Finally we conclude with discussions on the implementation and 
justification for our approach and direction for future work. 

1 Domain Description 

The maintenance of airplanes and their component systems utilizes a scheduled main-
tenance policy based on strictly controlled replacement of components at specified 
time intervals. This is a rather cost intensive strategy because, in addition to costs ac-
crued from the overhead of the fixed controls, the possible life span of many of the 
components are not used up when they are replaced. Moreover the specification for 
the complex of loads acting on a component, which is used to determine when to re-
place it, is not exactly the same as that experienced at run time.  

Sometimes it occurs that systems fail before the planned scheduled maintenance and 
need to be replaced immediately. This unscheduled maintenance leads to immense 
loss in time and capital since additional, previously unexpected, resources are ex-
pended on them outside of the standard scheduled maintenance process. 

In Airbus airplanes, failures are captured, detected and isolated by the built in test 
equipment (BITE) within every electronic unit. The BITE provides robust circuitry 
and software for model based continuous monitoring the performance of the system in 
which it is housed. Outputs from the BITE are collected in a central computer where, 
incorporating additional pre specified information; they are used to ease the actions of 
the maintenance team and help make the maintenance process run more smoothly.  

The BITE finds at least 95% of the failures and isolates at least 85%. Although im-
pressive, some deficiencies in this model of monitoring have been identified by us: 

− There is no provision for autonomous adaptive improvement of its internal model. 

− It doesn’t monitor the correlation and interdependence between subsystems. 
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− Its internal models for failure detection do not take into full consideration the im-
pact of environmental conditions at run time.  

− There is no provision for discovering and incorporating expert knowledge of the 
maintenance crew or new knowledge from the normal operation of the systems. 

− It fails to detect transient failures which results in the very vexing no fault found 
(NFF) problems where failures are reported by BITE, but their existence cannot 
be confirmed by the maintenance staff. This leads to delay and uncertainty in de-
ciding whether to replace a component or not, and all of these leads to more costs. 

− There is no inherent explanation of the process of generating the failure in a way 
that is comprehensible to humans 

A new maintenance paradigm is needed. One based on continuous, comprehensible,
dynamic and intelligent monitoring utilizing computational intelligence models that 
closely model the reasoning and decision process of human experts. With this new 
approach unscheduled maintenance is no longer unexpected because by continuously 
monitoring the systems, unexpected errors are preemptively discovered and communi-
cated. New knowledge is discovered from the normal operations of the system and the 
interrelationships between its components. This knowledge is used to improve the 
monitoring process thus leading to a system that learns and improves over time. In 
addition there is improved understanding of the system as a whole unit. The combined 
effect will lead to reduction in the costs of the scheduled and unscheduled mainte-
nance processes. The time interval between scheduled maintenance is extended be-
cause removal of parts is no longer dependent on guess work but on hard data derived 
from continuous monitoring at run time. NFF is reduced because the normal and 
faulty operation of the system and the interdependence between components is re-
corded. The introduction of comprehensibility into the models implies reduced per-
sonnel costs since less resource will be needed to train fewer personnel who’ll make 
fewer mistakes. Finally less delay from troubleshooting failures and longer interval 
between the now more efficient scheduled maintenance implies reduced costs and less 
fuel consumption which results in reduced environmental degradation. 

2 Review of Relevant Computational Intelligence Research 

One of the earliest promising attempts at creating an intelligent machine that simulates 
the way humans solve problems was the General Purpose Problem Solver (GPS) [1], 
by Newell and Simon based on work from their Logic Theory Machine [2], in the late 
1950s.  Their method could solve some general problems but failed woefully at the 
simplest of tasks because of the fundamental flaw of employing a general purpose 
problem solving strategy. Humans use specialized domain specific knowledge to solve 
problems and these do not typically generalize to other fields. Being skillful in flying 
kites does not typically translate to being skillful in flying airplanes. This insight, de-
spite the failure of their work, jumpstarted the development of expert or knowledge 
based systems. Expert systems provided some of the first successful applications of 
Artificial Intelligence to real world problems. DENDRAL [3] developed by Leder-
berg, Feigenbaum, Buchanan et al. at Stanford in 1967 was the first of these success-
ful programs. It interpreted the mass spectra of organic compounds to determine their 
molecular structure and atomic constituents. Another famous and successful expert 
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system was MYCIN [3] developed by Shortliffe at the Stanford Medical school in the 
early 1970s. It was used to diagnose and recommend treatment for blood infections.  

As defined by Welbank [4] an expert system is “a program which has a wide base of 
knowledge in a restricted domain and uses complex inferential reasoning to perform 
tasks which a human expert could do”. Despite initial successes, two major problems 
that militated against the widespread deployment of expert systems were  

1. Their inability to autonomously learn and improve their performance. 

2. The Knowledge Acquisition (KA) Bottleneck [5][6]. Every expert system is as 
good as the knowledge it contains (knowledge representation) and the knowl-
edge of the experts (knowledge elicitation) used to build it. The combination of 
these limitations defines the KA bottleneck. 

The Knowledge Elicitation Problem: Experts need to be available and willing to 
share their expertise with the knowledge engineer but this is not always the case. 
When they are willing they are often unable to easily and accurately express their 
implicit knowledge as rules for a machine. Sometimes experts have conflicting 
opinions about aspects of their knowledge. All of these define the challenge of elic-
iting knowledge from experts, and make this process very time consuming espe-
cially as it was done manually in the earlier days. MYCIN with only 400 rules re-
quired 100 man hours for its development. This is not acceptable for more complex 
systems. One approach for solving this problem is the process of knowledge discov-
ery from databases [7]. It is believed that existing databases contain hidden knowl-
edge that needs to be mined. Thus the field of data mining was born. 

Knowledge Representation Problem: The knowledge elicited from the experts has 
to be translated into the form in which it is stored in the machine, validated and then 
transferred into the machine. This process is rife with uncertainties [8]. There is no 
guarantee that the knowledge elicited is exactly the same as that transferred into the 
system. Also experts do not think in rigid crisp logic but in gradations and degrees 
of concepts. Different methods used for knowledge representation have included 
rules in crisp and fuzzy logic, frames, semantic networks, decision trees, exemplars 
and objects [9][10][11][12]. 

Research on the solution of these problems led to enormous advances in the fields that 
today constitute computational Intelligence. 

2.1 Computational Intelligence Methods 

While there is yet no consensus on the definition of CI, many researches [13][14] 
agree that CI is the field of research that encompasses the following – (i) Artificial 
Neural Networks(ii) Fuzzy Computing (iii) Evolutionary Computing (iv) Data mining 
and Machine learning. 

1. Artificial Neural Networks (ANN): Also known as connectionist systems develop 
models of the information processing in neurons for adaptive intelligent informa-
tion processing in practical real world applications. The discovery of back propa-
gation [15] in multi layer perceptrons by Rumelhart et al. [16] led to major ad-
vances in ANN research. Most ANN models are typical black box models, be-
cause they cannot provide explanations for their output. An exemption is the 

177



OWOTOKI, MAYER-LINDENBERG 

ART [17] which also, unlike Back Propagation, does not suffer from catastrophic 
forgetting as described in the plasticity stability dilemma by Grossberg [18].  

2. Fuzzy Computing: Computing model introduced by Lotfi Zadeh[19], whereby at-
tributes are not limited to just crisp binary values but have degrees of member-
ship that more closely mirrors the qualitative range of representations and per-
spectives used by humans. This model is a lot more suited to handle uncertainties 
and ambiguities. 

3. Evolutionary Computing: Computing model based on evolutionary algorithms 
[20] and evolutionary programming [21] whereby a population is evaluated by a 
fitness function and the best individuals are chosen (survival of the fittest). These 
individuals reproduce (crossover) or mutate to create a new population which are 
re evaluated and the process continues until the desired fitness is attained. 

Figure 1: Major Classes Inductive Learning Methods 

4. Data Mining and Machine Learning: We define machine learning as the inductive 
learning of rules and concepts from data and examples [33] Inductive in that we 
go from limited or no knowledge to general knowledge. By rules the importance 
of comprehensibility in the induced knowledge is underscored. While we use the 
terms machine learning and data mining interchangeably in this paper, techni-
cally there are differences between these terms. Holsheimer and Siebes [34] iden-
tified the difference as being in the source of data; for data mining the source is 
always a database. Another more important distinction describes the data mining 
process [35][36] with machine learning techniques as some of the methods used 
in the step that directly mines the data. Figure 1 above gives an overview of the 
major classes of the inductive learning methods. 

The different classes and their methods above possess strengths and weaknesses that 
suit them to particular problem areas. Because of this intrinsic bias [37] it is often 
necessary to experiment with different algorithms before identifying the appropriate 
one for a given task. Another approach is to utilize hybrid methods combining differ-
ent algorithms. 

2: Rule Based (Divide and Conquer) Methods

Decision trees e.g. IDT [11][12],  
C4.5 [23], CART [24] 
Production rules e.g. AQ15 [25], CN2 [26] 

3: Instance Based Learning Methods 

Case Based Reasoning [27] 
Nearest Neighbor Methods [28][29] 
Examplar Methods [30][31][32] 

Other CI Methods

Connectionist, evolu-
tionary computing, 
fuzzy logic and hybrid 
methods 

1: Statistical Methods 

Bayesian Classifiers [22] and 
other probabilistic methods 

Machine Learning  
(Inductive Learning methods) 
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2.2 Hybrid Computational Intelligence Methods 

The law of conservation of generalization performance prescribes that every algo-
rithm has domains in which its performance is inferior to another algorithm [38]. This 
has informed the multi-strategy approach to data mining that combines the strengths 
and weakness of different CI methods to create new hybrid methods that perform bet-
ter in complex domains [39]. A review of hybrid CI methods [40]shows how hybrids 
of the four different CI methods provided superior performance in diverse domains. 
Meta learning [41][42][43] is another approach to multi strategy learning. It applies 
different CI methods to different training data set and the predictions from the base 
learners are combined in the Meta learner to produce a more accurate final prediction. 

The CI methods and approaches listed above have been successfully deployed in 
many different application areas that presume a centralized monolithic model [44] of 
intelligence. However there are particular problem situations such as the aircraft 
monitoring domain that require a non monolithic model of intelligence, where intelli-
gence is both distributed in the components and centralized for knowledge common to 
the system as a whole. Our CHI framework is proposed for these problem situa-
tions.The CHI Framework 

Figure 2: Overview of CHI Framework  

The CHI Framework, Figure 2, employs a hierarchical, non monolithic, multi-strategy 
and intelligent approach to monitoring of the aircraft and its components. Each com-
ponent provides a definite function like passenger entertainment or cabin pressure 
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control. The components are monitored independently, while the probable interde-
pendence between them is monitored at a higher layer. This interdependence is crucial 
to learning more about the system as a whole.  

Figure 3: CHI Component Architecture 

The components share a common architecture shown in Figure 3. The data acquisition 
and generation module (DAGM) is responsible for acquiring operations data from 
sensors, actuators and other devices through which the component interacts with its 
container system and the environment. These data serve as input to the embedded CI 
model in every component. The choice of the CI model to use is determined after 
series of tests to find the model best suited to the bias of the provided function. The 
output from the CI model is the pattern

EcI ,,, κ      (1)  
Where I  is the input vector from the DGAM; c  is the class – the result of classifying 
I  with the embedded CI model; [ ]1,0∈κ  is the degree of confidence in c ; and E  is 
the explanation justifying c  andκ . The packaging module reformats the pattern in (1) 
as messages for the higher layers in the framework according to Table 1. 

Time_Stamp Date and Time 
Component_ID Unique Id of the component in the system 
Priority_Index Higher values mean lower priority 
Message_Class Class derived according to Table 2  
Message Same as the pattern in (1)  

Table 1: Message Format 

The Priority_Index P in table 1 is derived according to this equation: 
( )XCP γγ −+= 1    (2) 

Where: γ  – Weight assigned to the criticality index usually 0.5; C  – Criticality In-
dex, with lower values to the more critical components. X  – Severity index, a meas-
ure of the severity of messages. It is the same as the value of the message class in Ta-
ble 1 and is derived with heuristics similar to that of Table 2.  
We differentiate between two types of models; those with categorical class values, 
which we use for state monitoring and others with continuous valued output which we 
use for life cycle prediction. The categorical values are normalized to just two values 
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by the packaging module, either normal or abnormal state; however the actual value is 
not lost because it is enclosed in the message sent. The continuous valued classes are 
given higher severity index, which translates to lower priority because being life cycle 
predictors they are not as severe as the state monitoring messages. 

Pattern Class Message_Class 
Trigger Response 0 
Categorical Abnormal with confidence κ > 60% 1 
Categorical Abnormal with confidence 10% <  κ < 60% 2 
Categorical Abnormal with confidence κ < 10% 3 
Categorical Normal with confidence κ < 90% 3 
Categorical Normal with confidence κ > 90% 4 
Continuous 5 

Tabel 2: Example Message Class Derivation. 

After packaging, the messages are sent to the message aggregator (MA) module which 
implements a queue that ensures no message is lost sorts them according to their P
value. The message with lowest P  is then retrieved and sent to the message inter-
preter and response initiator (MIRI). 

MIRI analyzes messages and initiates response based on additional knowledge of 
the system it possesses. The response could be any combination of the following: 

− Alert the crew. The mode (e.g. alarm, blinking message) and destination (e.g. 
cockpit, cabin crew) of the alert reflects the severity of the message and the criti-
cality of the components involved. 

− Send query to the MA module for more information from same or other compo-
nent. If information is not in the MA module, a trigger is sent to the component to 
retrieve it. 

− Repackage the message and send to the onboard database. The contents of this da-
tabase are sent to an off board database after every flight. 

The embedded CI models for MIRI and in the components are derived from off board 
mining of data accumulated after many flights and from many airplanes. The new 
models are introduced as regular updates to the onboard system. 

3 Discussions and Conclusion 

The CHI framework is a work in progress. Currently we are developing the CI mod-
els for the components. This task is made more difficult because of the constraints of 
comprehensible explanations and degrees of confidence imposed by equation (1). One 
class of CI methods that we find promising for this purpose is the class of generalized 
exemplars [30]. We are developing modifications of this method that suit the bias of 
the functions in the aircraft monitoring domain. In the future we will explore hybrids 
of the generalized exemplars with other methods. The appropriate CI model for the 
MIRI is also currently being investigated. Another important technical challenge is in 
the implementation of the message aggregator module such that it ensures that no 
messages are lost. Different methods from queuing theory and/or parallel queues will 
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be explored for this purpose. Use of web services and similar standards for communi-
cation and exchange of information with the databases, user interface manager and off 
board systems will be explored. Finally getting all of these to work together consti-
tutes a serious technical challenge, which we aim to realize because of the physiologi-
cal plausibility of our approach. 

Physiological Plausibility: The motivation for our work was based on observations 
of the sensorimotor mechanisms of the vertebrate nervous system [44]. Consisting of 
the central nervous system and the peripheral nervous system, and comprising the seat 
of intelligence and consciousness in humans, the VNS is one of the most complex 
systems in the universe. It is known that the VNS organizes intelligence in a hierar-
chical, distributed and non monolithic fashion which informs our framework. An 
analogy of our CHI framework to the VNS is given below. 

CHI Framework Vertebrate Nervous System 

Components Organs 

Data acquisition and generation module 
with embedded CI model 

Nociceptors and Receptors (chemo, 
photo, mechano and thermo) 

Packaging Module and Common Interface Afferent Neural Pathways 

Messages Signals and their Integration 

Message Aggregator Module Dorsal Root or Spinal Ganglia 

Message Interpreter and response initiator Spinal Cord 

User Interface Manager Motor Response 

Data mining process that supplies the CI 
models in the framework 

Brain

Table 3: Analogy to the Vertebrate Nervous System  

By modeling our framework on the "only example of a complex versatile system 
that is universally accepted as intelligent: humans" [44] and particularly on the seat of 
intelligence in humans which is the nervous system, we provide initial justification by 
physiological plausibility for this unique and intelligent approach to the monitoring of 
aircraft systems. 
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