
Application specific vs. standard Web service
interfaces for the vertical integration of fieldbus

systems

Marcus Venzke1, Christoph Weyer1, and Volker Turau1

1Department of Telematics,
Hamburg University of Technology, Germany

{venzke,c.weyer,turau}@tu-harburg.de

Abstract — The paper compares two approaches for developing Web service inter-
faces for the vertical integration of TTP/A fieldbus systems. High-level abstractions
are provided by application specific interfaces, generated from metadata describing
fieldbus systems. In contrast standardised interfaces such as OPC XML DA only al-
low lower levels of abstractions. But these enable accessing the fieldbus system from
a broad range of standard clients, while high-level abstractions reflecting the appli-
cation programmer’s view on the system facilitate the development of more specific
clients and workflows.

1 Introduction
Enterprises increasingly aim for the integration of their information systems to satisfy
market requirements for flexibility, speed and cost reductions. Even automation sys-
tems are integrated to enable the vertical integration from high-level management sys-
tems down to production systems in the factory shop floor and for supporting condition
monitoring, fault diagnosis and predictive maintenance. Their integration raises specific
obstacles due to the mismatch between their capabilities as autonomous, real-time ori-
ented automation systems and the expressiveness in high-level information systems. In
the past this has often led to software being complex to master and verify.

Web services are a suitable technology for the vertical integration of automation sys-
tems, allowing loose coupling of autonomous systems. Justification and discussion of
requirements for Web service interfaces are given in [1]. These include security issues
and handling concurrent access to provided services. Interfaces need to be coarse grained,
because of the high latency of Web service calls. A major requirement is to provide high-
level abstractions to ease the integration.

This paper presents and compares two fundamentally different approaches of how to en-
gineer such interfaces: application specific and standardised Web service interfaces. Hav-
ing TTP/A fieldbus systems in mind one example is discussed for each approach. Section
2 reviews the integration primitives available in TTP/A fieldbus systems. After describing

153



VENZKE, WEYER, TURAU,

the standardised Web service interface OPC XML-DA in section 3, section 4 presents how
to map these to TTP/A’s primitives. The mapping of automatically generated, application
specifi c interfaces is discussed in section 5. Both approaches are compared in section 6,
before section 7 concludes.

2 TTP/A fieldbus systems
This paper primarily considers TTP/A fi eldbus systems [2] consisting of nodes (”smart
transducers”) connected by a bus allowing real-time communication. Each node contains
a micro-controller with sensors or actuators. As shown in Figure 1, a gateway enables
external access. It may be used by a Web service provider to connect to the system.

Node

Master
Transducer

Smart

Transducer
Smart

Transducer
Smart

Internet /

Intranet S
O

A
P Web Service

Provider

Production

Planning

Monitoring

Configuration

Management
Gateway

TTP/A Fieldbus System

T
T

P
/A

 B
us

Proprietary
Interface

Figure 1: Basic architecture for vertical integration

According to [3] access should be supported with three interfaces viewing nodes from
three different perspectives. The real-time services interface (RS) provides time sensi-
tive information generally used for control purposes. The diagnostic and management
interface (DM) enables monitoring and administration. Nodes are confi gured using the
confi guration and planning interface (CP).

A key feature of TTP/A fi eldbus systems is the concept of an Interface File System
(IFS), a conceptual model for addressing data distributed across the nodes. Addressing is
based on a static four-level hierarchy in which fi eldbus systems (clusters) contain nodes,
organised in fi les consisting of 4 bytes records. Entities on each level are identifi ed with
a one byte number allowing to uniquely name each record with a four bytes address.

IFS supports three fi le operations on records: read, write, and execute. All operations
have the record’s four bytes address as parameter. The operations read and write atomi-
cally read or write a single named record. When calling the operation execute, the record’s
address denotes a function to be performed on a node. If the function requires parameters
these have to be written to other records in advance.

Metadata is added to a TTP/A fi eldbus system to allow generic software to interact with
it. This enables application software (e.g. management tools) to adopt itself to different
or changing fi eldbus systems. The paper utilises XML-based metadata format introduced
in [4] similar to the format from [5]. It describes a fi eldbus system with one cluster
description and one or many node descriptions.

A node description specifi es the characteristics of a specifi c type of nodes. It is pub-
lished by the node manufacturer and includes descriptions of existing fi les, records and
operations. Logical variables are assigned logical names and are mapped to a single or

154



INTERFACES FOR FIELDBUS SYSTEMS

several IFS records. Supported operations are defi ned including their names and param-
eters. The cluster description describes a fi eldbus system as a whole. It is created for a
specifi c cluster and used to confi gure it. Constituent nodes are named and described as
well as the communication amongst them. Their types are defi ned by referencing node
descriptions.

3 Standard interface: OPC XML-DA

The OPC XML-DA [6] is a standard Web service interface for reading and writing data
from and to plant floor automation systems. It is defi ned by the OPC Foundation, an
industry consortium of over 300 members including the major vendors. The majority of
interfaces defi ned by the consortium are based on Mircosoft’sComponent Object Model
(COM), mainly available for MS Windows platforms. XML-DA is their fi rst interface for
Web services allowing interoperability with a broader range of platforms.

OPC XML-DA’s data model is based on typed data items (OPC items) that are named
and organised in a hierarchy. Each item stores a single value. It is identifi ed with the
combination of the two strings: item path and item name, the item path identifying a
namespace in which the item name is unique. A set of dynamically retrievable properties
is associated with every item containing its metadata including a human readable descrip-
tion, access rights, a time stamp, change rate, engineering unit and data type. Possible
data types are simple (e.g. string, integer or double), enumerations or arrays.

Operations for accessing item values are Read and Write. Both allow accessing several
items with a single call. Each item’s path and name is contained in requests to these
operations. To optimise periodic reads of the same set of items a subscription mechanism
is provided. The set of items is subscribed by calling the operation Subscribe and then
periodically polled using SubscriptionPolledRefresh.

The OPC operations Browse and GetProperties are used to query which OPC items
are available and values of their properties. Browse allows querying an OPC item’s im-
mediate successors including fi ltering and can return property values of the items found.
Property values can also be retrieved with GetProperties. The operation GetStatus is used
to retrieve the status of the OPC server.

4 Mapping OPC XML-DA to IFS

Providing OPC Web services for TTP/A fi eldbus systems requires an OPC XML-DA ab-
straction for IFS. IFS’s fi xed four-level addressing hierarchy needs to be mapped into
the address space of OPC. The three interfaces RS, DM and CP have to be implemented
with the sole interface of OPC XML-DA. Moreover the different semantics of their op-
erations have to be bridged. Finally the metadata describing the fi eldbus system must be
represented as OPC properties.

While IFS’s addressing hierarchy is fi xed to clusters, nodes, fi les, and records, OPC
has namespaces allowing arbitrary hierarchies. This enables a direct mapping. Clusters,
nodes, fi les, and records are the items constituting the hierarchy. Clusters contain nodes as
children, having fi les as children. Records could be used as leafs having four byte values.
All items could be named with IFS’s numbering scheme.

However metadata describing the fi eldbus system allows improving this hierarchy. The

155



VENZKE, WEYER, TURAU,

node description defi nes logical variables including types and how these are composed
from records. This enables typed variables as leaf items of OPC’s hierarchy, abstracting
from individual storage spaces and adding semantics. In addition the cluster and node
descriptions defi ne names for clusters, nodes, fi les and logical variables. Naming OPC
items with these increases the understandability of item paths and item names used in
OPC XML-DA.

Having only one interface in OPC XML-DA raises the issue of how to represent IFS’s
three interfaces RS, DM, and CP. The reason for introducing three interfaces was to reduce
the complexity of an individual interface by only supporting primitives required for a
specifi c view on a fi eldbus node. The interfaces RS, DM, and CP represent the three
views of accessing real-time data, for diagnostic and maintenance, and for confi guration
and planning respectively as proposed in [3]. The same views should be supported with
OPC XML-DA’s single interfaces as part of OPC’s hierarchy. We propose to represent
each view as OPC item as children of a cluster, having descendants of only those nodes
and logical variables which are accessible in that view.

Warehouse

AirConditioning

Humidity

Light

Warehouse

Humidity

Light

AirConditioning

Diagnostic and Management

Configuration and Planning

Threshold

TemperatureProgression

Real Time Services

.

.

.

Cluster

Node

Record

File

Threshold

Temperature_Value_0

Temperature_Value_1

Temperature_Value_n

Figure 2: Mapping strucure of IFS to OPC Items

Figure 2 depicts a mapping of an example IFS structure to the OPC items hierarchy.
On the left side a simple fi eldbus system with a single cluster (Warehouse) is shown. The
cluster contains three nodes Humidity, Light, and AirConditioning. The latter contains a
fi le with records regarding the temperature threshold and a set of temperature values de-
scribing the progression in time. The right side of fi gure 2 shows the OPC item hierarchy
representing the OPC view upon the fi eldbus system. As proposed the cluster contains the
three different interfaces for accessing the nodes. Records are mapped directly on OPC
items. The set of records describing the temperature progression is merged into one OPC
item with the data type array of integer.

Future approaches may completely hide the IFS hierarchy, providing an OPC hierarchy
based on the item’s meaning for the application. To construct this hierarchy metadata is
required classifying logical variables from this point of view. For example, all variables
representing measured temperature values may be assigned a specifi c identifi er. Unfortu-
nately such classifi cation is not available in current metadata formats for TTP/A fi eldbus
systems.

Bridging the semantics of the operations from IFS to the OPC XML-DA is obvious

156



INTERFACES FOR FIELDBUS SYSTEMS

to some extent but raises issues for IFS’s operation execute and for metadata. OPC’s
operation GetStatus returning the current status of the server does not need to be mapped
at all, but is directly implemented by the Web service.

OPC’s operations Read and Write are mapped to the IFS primitives with the same name
and similar semantics. A single OPC call may be mapped to several calls in IFS for two
reasons. Firstly one logical variable in OPC may be mapped to several IFS records, as
described above. Secondly OPC allows reading or writing many values with one call to
achieve a coarse granularity. This is required for scalability in high latency networks such
as the Internet [1].

Reading and writing over the RS interface requires considering real-time, which cannot
be achieved over networks based on Internet technology and thus with OPC XML-DA.
To overcome this issue OPC provides a timestamp with every value that is read giving
the time when the value was valid. On the RS interface the timestamp should be set to
the point in time when the value was valid in the TTP/A fi eldbus node. Determining this
point in time is not possible if the DM or CP interface is used, because the protocols used
for these interfaces on the TTP/A fi eldbus do not guaranty real-time. The time can only
be approximated by the Web service implementation.

OPC’s mechanisms for subscriptions can directly be implemented in the same man-
ner as the operation Read. But more elaborate techniques allow optimisations such as
preloading and caching of data [1].

The IFS operation execute raises the issue, that it does not exist in OPC. Hence it needs
to be mapped to Write or Read. Write is preferred because there is general agreement
that Read does not cause changes in the system. In IFS the same record may be allowed
to be executed and written. If so ambiguity should be eliminated by defi ning two logical
variables for write and execute, even though only one is defi ned in the cluster description.
Both should be differentiated by name. Since execute does not allow a parameter the
value required for OPC’s operation Write has to be ignored.

The operations Browse and GetProperties primarily return metadata from the cluster
and node descriptions, specifying the hierarchy and the logical variables properties. OPC
properties described in the metadata include the item’s data type, minimum and maxi-
mum value, engineering unit (e.g. meter), change rate of the value, access rights (readable
and/or writeable), and a human readable description. Three other properties require re-
trieving data from the fi eldbus system as with the operationRead. These contain the item’s
value, the related timestamp, and the quality marker. The latter describes the value’s ac-
curacy to be good, bad, unknown, or inaccessible due to an error. It needs to be mapped
from the numeric value used in IFS for the same purpose and from error states.

Table 1 summarises the proposed mapping of OPC XML-DA operations to IFS opera-
tions and the usage of properties from the metadata describing the cluster.

In order to prove the mapping of OPC XML-DA for TTP/A fi eldbus systems a pro-
totypical implementation exists [7] using the XML-DA Rapid Server Toolkit (XDARap)
from Advosol [8]. XDARap is a .NET Web service that implements the OPC Founda-
tions OPC XML-DA specifi cation version 1.0.1. Figure 3 shows the general structure
of the OPC XML-DA Web service. The generic part manages the OPC XML-DA client
interface. The concurrent update of the data values in the generic part and the customisa-
tion part is done by the update thread. A cache is used to store values for the subscription

157



VENZKE, WEYER, TURAU,

OPC XML-DA IFS Used Metadata
GetStatus — —
Read read dataType property
Write write / execute dataType property
Subscribe — scanRate property
SubscriptionPolledRefresh read dataType property
SubscribtionCancel — —
Browse read specifi ed properties
GetProperties read specifi ed properties

Table 1: Mapping of OPC XML-DA operations

mechanism. All items are maintained in a hierarchical address space by the generic part.

Hierarchical
Address Space
Management

Data Cache
Read/Write Subscription

Handling

OPC XML−DA
Client Call Handling

Update
Thread

OPC XML−DA
Client

OPC XML−DA
Client

Device Read/WriteItem Declaration

IFS

Metadata

Customization Assembly

Generic Web Server

ASP .NET

Figure 3: Architecture of OPC Web service implementation

The customisation part is implemented as a .NET assembly using C#. This part handles
all device specifi c activities. On startup the metadata is used to create the item hierarchy
and to confi gure the item properties. During runtime the read and write operations are
handled by a device specifi c adaptor. A IFS simulation developed in [9] is used to verify
the mapping and the implementation.

5 Application specific interfaces
As an alternative to OPC XML-DA we have proposed to generate cluster specifi c Web
service interfaces based on a cluster’s metadata [4]. The three interfaces RS, DM, and CP
are retained as individual Web service interfaces having different operations as required
for the specifi c purpose. For confi guring a cluster its cluster description is given to the
Web service via the CP interface. This determines logical names and types to be used in

158



INTERFACES FOR FIELDBUS SYSTEMS

the RS and DM interface and creates logical operations.
Figure 4 depicts the conceptual architecture for implementing the three interfaces. Ge-

neric software components are combined with cluster specifi c components. The latter
support naming and typing of data and implement cluster specifi c operations. Descrip-
tions of the operations are included in the WSDL document, which describes all three
Web service interfaces. Generic software components as well as the WSDL document
are generated by the so-called confi guration processorwhen confi guring the cluster. It is
based the cluster description including the referenced node descriptions.

C
lu

st
er

 In
te

rf
ac

e Transducer
Smart

Transducer
Smart

Transducer
Smart

Master
Node

T
T

P
/A

 B
us

Gateway

TTP/A Fieldbus System

Request

Handler

Configuration

Processor

Web Service Description

(WSDL)

Meta Data

Directory Service

Smart Transducer
Description

Proprietary
Interface

ge
ne

ric

Web Service

creates

creates

stores

uses

Service Processor

Cluster

Description

sp
ec

ifi
c

C
P

R
S

D
M

Figure 4: Architecture for implementing application specifi c interfaces

The Generation process is activated when the cluster is confi gured by calling the oper-
ation Confi gureover the CP interface. The cluster description is passed as a parameter in
the form of an XML document. Using this as input the confi guration processor not only
generates the cluster specifi c components but also confi gures the cluster and saves the
description for later retrieval. The cluster description is returned by the operation Read-
Confi gurationagain as XML document. Since the confi guration needs to be accessible
from all views this operation is available in all three interfaces.

The RS interface allows retrieving time sensitive data periodically exchanged on the
TTP/A bus. The semantics of the operations is similar to OPC XML-DA. Logical names
and types are extracted from the metadata. Logical names are used to identify data re-
trieved with the operation Read. Returned values are typed and may originate from mul-
tiple IFS records. A time stamp attached to each value provides real-time semantics. To
achieve a coarse granularity many such values can be retrieved with a single call by al-
lowing lists of logical names and values as parameter. Also a mechanism for subscription
is provided with operations similar to OPC XML-DA.

The DM interface supports maintenance tasks such as monitoring, fault diagnosis and
parameterisation. This requires reading and writing values from and to fi eldbus nodes and
executing logical operations. Operations for reading and writing are again similar to OPC
XML-DA. The operation Read allows reading data as in the RS interface, but without
attaching time stamps to values. Write is provided for writing sets of logical, typed values
into the fi eldbus system.

159



VENZKE, WEYER, TURAU,

For executing logical operations in fi eldbus nodes the DM interface is enhanced during
the confi guration. A node’s logical operations are described in its node description that
is referenced from the cluster description. The confi guration processor uses both types
of metadata to add the logical operations to the DM interface as Web service operations.
When an operation is called parameters are automatically written into the appropriate
records, the IFS operation execute is called and return parameters are read.

6 Comparison
Web service access to TTP/A fi eldbus systems can be achieved with both application
specifi c interfaces and the standard interface OPC XML-DA. Both approaches provide a
course granularity required for Web services and a higher abstraction than IFS. But differ-
ences in their semantics and standardisation makes them suitable in different application
scenarios.

The two approaches vary in how they represent confi gurations and capabilities of in-
dividual fi eldbus systems. OPC XML-DA preserves a single interface with the same
semantics over a broad range of automation systems including TTP/A fi eldbus systems.
Differences are reflected in the hierarchy of its namespace, existing items, names, and
properties. With application specifi c interfaces these are represented by adding opera-
tions reflecting the fi eldbus system’s particular capabilities. The three views RS, DM, and
CP are retained as individual Web service interfaces making operations also view specifi c.

The major advantage of having OPC XML-DA as a fi xed, standardised interface is
the enabling of standard clients. Applications only need to support a single interface
for accessing a broad range of automation systems. It is adapted to a specifi c system
by confi guring item paths and item names of logical variables that shall be read from
or written to. Industry applications already support XML-DA. An example is Siemens’s
process and production visualisation tool SIMATIC Windows Control Center [10]. SAP
R/3 provides the OPC-DA Connector [11] supporting the OPC DA interface that can be
adapted to OPC XML-DA with standard proxies.

Accessing a fi eldbus system over application specifi c interfaces requires an application
to have generic support for calling Web services. Generally a proxy is generated from the
interface’s WSDL document, representing the Web service operations as local functions
or methods. Program code then needs to be implemented to integrate the proxy into the
application. Some industry applications support this generic kind of calling Web Services,
SAP R/3 is again an example [12].

Even though supporting OPC XML-DA is less complex for standard clients, the high-
level abstractions provided by application specifi c interfaces are more suitable for devel-
oping more specifi c clients. Applications specifi c abstractions are constituted to reflect
the application programmer’s view on a specifi c fi eldbus system. This makes the devel-
opment more straightforward and less error-prone.

An example are logical functions with parameters that can be called in fi eldbus nodes.
In an application specifi c interface a function is represented as Web service operation
that is provided for development as local function by the proxy. The function can be
called directly providing parameters and returning results. Calling the same function over
an OPC XML-DA interface requires three steps. The operation Write has to be called
for setting all logical variables containing parameters. The function is then executed by

160



INTERFACES FOR FIELDBUS SYSTEMS

calling Write for the logical variable representing the function. Finally Read needs to be
called for querying logical variables for the results. Performing the three steps requires
an application programmer to know details about which variables represent parameters,
results and functions and increases the effort of error handling.

Similarly confi guring a TTP/A fi eldbus system requires one call with an application
specifi c interface or setting many logical variables with OPC XML-DA. A single call to
the operation Confi guredescribed in section 5 confi gures the fi eldbus system having the
XML encoded cluster description as parameter. From the cluster description the operation
determines appropriate values for the confi guration relevant records in all fi eldbus nodes.
With OPC XML-DA all equivalent logical variables have to be set with the operation
Write. It is the responsibility of the application programmer to know which variables
have to be set to which values.

When integrating the Web service into workflow systems, application specifi c primi-
tives also increase the readability of workflow descriptions. [13] sees workflows as an
important approach for the vertical integration of automation systems. Languages such
as BPEL4WS (Business Process Execution Language for Web Services) are used to de-
scribe Web service based workflows as processes consisting of activities that are calls to
Web service operations. Thus the operations directly become the primitives for describing
workflows and should be meaningful from a workflow perspective which is similar to the
application programmer’s view. As example an activity in an error handling workflow of
a shop floor might be to reset a fi eldbus system. An application specifi c interface may
provide an operation Reset for that purpose, also becoming the primitive in the workflow
description. In contrast with OPC XML-DA the primitive would be the operation Write
having the name and path of a logical variable as parameter, that represents the function
of resetting the system. Having the latter primitive in a workflow description obviously
provides less readability.

Another advantage of application specifi c interfaces is the ability of checks at the client’s
compile time. Proxies are generated from WSDL documents containing information
about operations, parameters and types. This allows type checking when compiling and
linking proxies with the application. With OPC XML-DA’s operations Browse and Get-
Properties items and types are retrieved dynamically and can thus only be checked at run
time.

Application specifi c interfaces also allow a more flexible authorisation scheme. Au-
thorisation in OPC XML-DA may disallow calling the operations Write, Read, or query-
ing metadata with Browse or GetProperties. A more fi ne grained scheme would require
putting rights on individual OPC items. Similar options exist with application specifi c
interfaces. But putting access rights on the three interfaces and the application specifi c
Web service operations provides further options for a simple, yet flexible authorisation
scheme.

7 Conclusion
Both approaches - application specifi c and standardised Web service interfaces - have
their advantages justifying their utilisation in specifi c fi elds. Having a fi xed, standard-
ised interface such as OPC XML-DA for a broad range of applications, enables standard
clients to access many systems by simply implementing that interface. This is a signifi -

161



VENZKE, WEYER, TURAU,

cant advantage, even though the required common abstraction cannot reflect the applica-
tion programmer’s view on a specifi c automation system. Application specifi c interfaces
support that view, thus facilitating the development of clients and workflows implemented
for that application. But integrating these into standard clients requires generic Web ser-
vice support and implementation effort for individual systems. Thus standardised Web
service interfaces should be chosen for automation systems mainly accessed by standard
clients, while application specifi c interfaces should be used for systems to be integrated
into Web service based workflows and specifi cally implemented environments.

References
[1] V. Turau, M. Venzke, and C. Weyer. Vertical Integration of TTP/A Fielbus Systems Using Web

Services. In Proceedings of First International Conference on Informatics in Control, Automation
and Robotics (ICINCO 2004), Setubal, Portugal, August 2004. IEEE Computer Society Press.

[2] H. Kopetz, M. Holzmann, and W. Elmenreich. A Universal Smart Transducer Interface: TTP/A. In
Proceedings of the Third IEEE International Symposium on Object-oriented Real-time distributed
Computing (ISORC’00), March 2000.

[3] H. Kopetz. The Three Interfaces of a Smart Transducer. In Proceedings of the Forth IFAC Interna-
tional Conference on Fieldbus Systems and their Applications (FeT’01), Nancy, France, 15th-16th
November 2001.

[4] V. Turau, M. Venzke, and C. Weyer. A Web Service for TTP/A Fieldbus Systems based on Meta-Data.
In Proceedings of the Second Workshop on Intelligent Solutions in Embedded Systems (WISES’04),
pages 159–168, Graz University of Technology, Austria, 25th June 2004.

[5] S. Pitzek. Description Mechanisms Supporting the Confi guration and Management of TTP/A Field-
bus Systems. Master’s thesis, Vienna University of Technology, Austria, August 2002.

[6] OPC. OPC XML Data Access Specifi cation. Openness Productivity and Connectivity Foundation
(OPC), November 2003. Version 3.00.

[7] S. Liu. OPC XML DA for accessing IFS. Master’s thesis, Hamburg University of Technology,
Germany, January 2005.

[8] Advosol. XML DA Rapid Server Toolkit, 2004.
http://www.advosol.com/pc-12-9-xml-da-rapid-server-toolkit.aspx

[9] S. Bartkus. Integration of Fieldbus Systems into Enterprise Applications based on Meta Data. Mas-
ter’s thesis, Hamburg University of Technology, Germany, September 2004.

[10] Siemens. SIMATIC WinCC - Prozessvisualisierung und Plattform für IT & Business Integration,
2004. http://www.siemens.de/wincc

[11] SAP. SAP OPC Data Access (SAP ODA), 2000.
http://www.gefanucautomation.com/downloads/special/features/sapoda paper.doc

[12] A. Schneider-Neureither, editor. The ABAP Developer’s Guide to Java. SAP Press, 2004.

[13] A. P. Kalogeras, J. Gialelis, C. Alexakos, M. Georgoudakis, and S. Koubias. Vertical Integration of
Enterprise Industrial Systems Utilizing Web Services. In Proceedings of the Fifth IEEE International
Workshop on Factory Communication Systems (WFCS’04), pages 187–192, September 2004.

162




