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Abstract — Energy efficiency and fault-tolerance are the most important issues in
the development of next-generation wireless ad hoc networks and sensor networks.
Topology control as a low level service (typically below the traditional layer struc-
ture) governs communication among all nodes and is hence the primary target for
increasing connectivity and saving energy. In this paper, we present an improvement
of our topology control algorithm for very dynamic networks and low power devices
(e.g. sensor nodes). The algorithm constructs a fault-tolerant topology for energy-
efficient and fault-tolerant multi-hop communication in a two-tier network consisting
of a large number of wireless nodes and a few gateway nodes (e.g. base stations re-
sponsible for exchanging data with other networks). Using only local information,
like distance/channel attenuation to neighbors, our fully distributed algorithm effi-
ciently constructs and continuously maintains a k-regular overlay graph that guar-
antees low total transmission power, is k-node-connected and ensures failure local-
ity. It automatically adapts to a dynamically changing environment, is guaranteed
to converge, builds a hierarchy of clusters that reflects the node density and exhibits
good performance as well.

1 Introduction
During the recent years, wireless multi-hop networks (wireless sensor networks, mobile
networks, ad hoc networks, . . . ) experienced a steady increase of both the number of
applications and system size. The miniaturization of network nodes, which are primar-
ily battery-powered nowadays, raised an increasing concern for power consumption and
hence power efficiency. In addition, due to evolving critical application domains and the
increasing number of failures that are likely to occur in systems of that size, there is also
a growing demand for security and fault-tolerance.

∗This research is supported by the FWF-project Theta (project no. 17757-N04)
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A particularly critical component with respect to energy-efficiency and fault-tolerance
in wireless networks is topology control. By selecting the particular neighbors a node
may directly communicate with, topology control maintains a (sparse) overlay graph that
can be used for multi-hop communication between any two nodes in the network. From
a practical point of view, the number of neighbors per node should be bounded by a
(small) constant here: Most wireless networks require some dedicated communication
hardware for every link. For example, CDMA needs a correlator on both sender and
receiver side of every point-to-point connection. The same is true if peer-to-peer hardware
encryption/decryption is used on every link. As usual chipsets provide a fixed number
of such devices, the overlay graph should ideally be regular (which could also improve
resource and power utilization).
The problem of constructing/maintaining such an overlay graph is further exacerbated
by the fact that link performance can degrade, that both links and nodes can crash and
recover, and that nodes can move. In order to guarantee unimpaired communication under
such circumstances, the overlay network must be robust: It should provide fault-tolerance
and adapt quickly to changes in the environment. Suitable overlay graphs should hence
be maintained in a cost-optimal and self-healing way: If connections or nodes become
expensive or go down for some time, the overlay graph must be adapted in order not to
use them further.
Still, traditional topology control solutions (see Section 2) cannot cope with those re-
quirements, since fault-tolerance is usually sacrificed for power efficiency. In order to be
power efficient, topology control algorithms try to reduce the number of links and thereby
reduce the redundancy available for tolerating node and link failures.
The topology construction approach utilized in this paper avoids this problem, by means
of a suitable separation of concerns: Some specified fault-tolerance, namely, a k-(vertex/
0node)-connected network, is guaranteed by choosing a suitable (but provably minimal)
number of links to be added to the overlay graph. Power efficiency is introduced in the
construction algorithm by selecting the most efficient links among the set of available
ones. Every (potential) link in the network has associated an arbitrary weight for this
purpose, that is, we assume that every node can probe or estimate how expensive or dif-
ficult it is to communicate with a specific peer. Distance, required transmission power,
interference level or any combination of such quantities are legitimate weights here. Note
that the assigned weights need not satisfy the triangle inequality and that we do not re-
quire homogeneous nodes or uniform transmission ranges. Hence our algorithm does
not require position information or assume the communication graph to be a Unit Disk
Graph. Rather we use a general weighted communication graph. In addition, weights
may be time-dependent: For example, a communication peer could be a moving node or
the required transmit power might not only depend upon the distance but also upon the
instantaneous level of the internal (thermal) noise, multiuser interference, signal attenu-
ation, multi-path fading, and many more. Likewise, a link to a receiver that temporarily
suffers from low battery or heavy processor load may be considered more costly than
usual.
In the remainder of this paper, we present a fully distributed algorithm for constructing
and continuously maintaining a k-regular and k-connected overlay graph for fault-tolerant
multi-hop communication in large-scale wireless networks, which is based upon a clus-
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tering scheme introduced in [1]1. It recursively forms groups consisting of k nodes that
are treated like single nodes subsequently.
According to the above separation of concerns, the algorithm actually consists of two
reasonably independent parts (that also allow to use our scheme in very different wireless
networks):

1. The generic construction algorithm (presented in Section 5), which builds up and
continuously maintains the k-regular and k-connected overlay graph. It does so by
processing proposals for links to be added to the overlay graph supplied by the spe-
cific propose module (see next item). Furthermore Section 6 presents an extension
which keeps topology changes caused e.g. by a node failure in the vicinity of the
failed node. This novel extension is particularly beneficial in very dynamic environ-
ments and low power devices (e.g. sensor networks).

2. The propose module (cp. Definition 4), which tries to find minimal-weight links to
be added to the overlay graph. The propose module is network-specific and allows
to trade construction complexity for minimality of the weight-sum of the overlay
graph (and hence overall power efficiency, for example).

The overlay graph is k-connected, which is optimal, and thus ensures that k node-
disjoint paths exist between any pair of nodes. It has low total weight and inherently pro-
vides failure-locality as well: Even excessively many failures in some part of the system
do not impair fault-tolerant communication in other parts. As a by-product, the algorithm
produces a hierarchy of clusters represented by a k-ary tree that reflects the node “den-
sity”. This property can be used in higher level services, like data aggregation in sensor
networks, routing, naming, as well as geo- and multicasting.
Organization of our paper: After a short survey of related work in Section 2 and some
definitions in Section 3, we introduce our basic method for constructing a fault-tolerant
communication topology in Section 4. Section 5 presents our fault-tolerant algorithm,
which implements this method in a fully distributed way. Section 6 introduces our novel
extension for very dynamic networks and for low power devices. Some conclusions and
directions of future research are provided in Section 7.

2 Related Work
Several non fault-tolerant topology control algorithms have been proposed in literature
(refer to [2] for an overview). Most of them rely on the homogeneous network assumption
with equal transmission range which may not hold in practice [2].
A few fault-tolerant topology control algorithms [3], [4] and [5] have also been pre-
sented in recent years (see [3] and [5] for a summary): Hajiaghayi [3] presented approx-
imation algorithms for minimum weight k-connected subgraphs based on the minimum
spanning tree. However, [5] contains a counter-example which shows that the topology
does not assure k-connectivity. In [4], Bahramgiri et al. extended their CBTC algorithm
to construct a fault-tolerant topology: It is proved to be k-connected but requires a homo-
geneous network. Li and Hou [5] first presented a fault-tolerant extension for their greedy

1Note that [1] introduced the basic idea of our clustering scheme. This paper is devoted to an extension
of this scheme, which poses a number of unique problems.
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algorithm of [2], and then derived a localized algorithm. Still, none of those solutions en-
sures fault-tolerance with bounded or fixed node degree and therefore a low or minimum
number of connections.

3 Definitions
We consider a simple undirected weighted graphG = (Π, Λ) consisting of a set of n nodes
Π = {1, ..., n} and a set of weighted edges Λ ⊂ Π × Π × R. The network is modeled
as a communication graph G and contains the set of potential edges. It is assumed to be
fully connected, in the sense that w < ∞ for any edge (x, y, w) ∈ Λ. We will drop the
fully connected graph assumption, however, i.e., allow ω = ∞, when we introduce the
extension of our construction method in Section 6. Note carefully that this assumption
does not mean that any node actually communicates with every other node, but only that
it could communicate with every (reasonable) peer. Both the set of alive nodes and the
weight of the edges in the communication graph G may be time-variant.
Our algorithm constructs a lowweight overlay graphG′ that is k-regular and k-connected,
for some given k. Recall that a graph is κ-connected (also referred to as κ-node-connected
or κ-vertex-connected) if the removal of any subset of κ − 1 nodes leaves the graph con-
nected while there exists a subset of κ nodes whose removal disconnects the graph. A
graph is regular of degree r if all nodes have degree r. In order to easily distinguish the
communication graph G and the overlay graph G′, the edges of the latter will be called
connections.
In order to avoid the special top-level group of the overlay graph, employed in [1],
we introduce gateway nodes2 and assume that a small number of them (n′′ ≥ 2k − 2
are sufficient, cf. Theorem 1) are present in the network. In addition to the wireless
communication links to/from regular nodes, which have to be set up by our algorithm, all
gateway nodes are assumed to be fully interconnected with all other gateway nodes via
a dedicated backbone network. The set of nodes Π hence consists of n′ regular nodes
Π′ and n′′ gateway nodes Π′′ with n = n′ + n′′ and Π = Π′ ∪ Π′′. In order to ensure
that gateway nodes are only used after all regular nodes have been exhausted, it suffices
to assume that the edge weight between regular and gateway resp. gateway and gateway
nodes are chosen according to ∀x ∈ Π′, y ∈ Π′′ ⇒ (x, y, k2K) ∈ Λ resp. ∀x ∈ Π′′, y ∈
Π′′ ⇒ (x, y, 2k2K) ∈ Λ, where K is the maximum edge weight between regular nodes.
Our algorithm will then construct a low weight overlay graph G′ = (Π′ ∪ B, C) with
B ⊆ Π′′ and C ⊆ Λ. Note that possibly not all gateway nodes are used in the overlay
graph and that gateway nodes inG′ may have degree k−1 due to the additional backbone
interconnection, whereas regular nodes are always used up and always have degree k.

4 Topology Construction Method
In this section, we provide an overview3 of the clustering scheme introduced in [1], which
induces an overlay graph G′ with the desired properties. The idea is to build groups of
nodes that appear like single nodes, such that they can be treated like those subsequently.

2For a single tier topology without gateway nodes refer to [1].
3The results provided in this section actually differ from [1] in that we changed the handling of root

groups.
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Figure 1: Communication Graph (a), Network Graph (b) and Topology (c)

Figure 1 shows an example, where 1a is the fully connected communication graph G,
1b depicts the constructed overlay graph G′ for k = 3, and 1c provides the tree represen-
tation corresponding to the constructed topology. From 1b it is apparent that the regular
nodes (1, 2, 3), (4, 5, 6) and (8, 9, 10) are combined into groups with id A, B, and D, re-
spectively. Such a group is formed if all members agree upon the fact that the sum of the
weights of their internal connections (e.g. 4 − 5, 4 − 6, 5 − 6) is minimal over all alter-
native group constructions. Each of the k members of a group is connected to all of the
k − 1 other members (internal connections) and has exactly one connection left (external
connection). Since there are k members in a group, any group has k external connections
left, which are available in higher level groups. From the point of view of higher-level
groups, groups hence look like nodes.
For example, group C again consists of three members: A single node 7 and two groups

A and B, which are connected via their external connections. Again, all members of C
agree upon minimality of the sum of their internal connections’ weights. Groups E and
F finish the topology and include gateway nodes (11, 12 and 13), which may have degree
k − 1 due to the additional backbone connectivity. Figure 1c reveals that the resulting
group structure is a k-ary tree. The edges of the tree represent the membership relation
among the groups.
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We now give a formal description of our topology: A group consists of an identifier gi

and a set of members(gi). The set of all group identifiers is G. The set of members(gi)
consists of exactly k nodes and groups: members(gi) ⊆ (G ∪ Π), |members(gi)| = k.
A node or group can only be member of a single group:4 ∀ga, gb ∈ G, ga 	= gb : x ∈
members(ga) ∧ y ∈ members(gb) ⇒ x 	= y. For every gi ∈ G we define the nodes of a
group as nodes(gi) =

⋃∞
l=0 membersl(gi)∩Πwheremembers0(gi) = members(gi) and

membersj(gi) =
⋃

r∈membersj−1(gi)∧r∈G
members(r). For every node p ∈ Π we define

nodes(p) = {p}.
A connection (p, q, w) ∈ C from node p to node q with weight w is a group gi in-
ternal connection if p ∈ nodes(ga) and q ∈ nodes(gb) with ga, gb ∈ members(gi) and
ga 	= gb. If there is a connection (p, q, w) ∈ C between node p ∈ nodes(ga) and node
q ∈ nodes(gb) we call the groups ga, gb connected. The members of a group are fully
connected among them: ∀ga, gb ∈ members(gi), ga 	= gb ⇒ ∃p ∈ nodes(ga), q ∈
nodes(gb), (p, q, w) ∈ C.
Hence, every group member has k−1 connections to other group members and therefore
exactly one connection left. Since there are k members in a group, the group has—like a
node—k connections left. We call the k nodes of a group gi with one connection left the
terminal nodes Tgi

⊆ Π of a group. By convention, we define that Tp = p for a single
node p ∈ Π.

Definition 1. The weight of a group ω(gi) is a triple (Ai, members(gi),internal connec-
tions of group gi), where Ai is the maximum of the sum of all group gi internal connec-
tion weights and the maximum of all group members’ weights plus an arbitrary small
constant ε, formally: Ai = max(

∑
internal connection weights, max(members’ group

weights) + ε). A group gi has smaller weight than gj, formally ω(gi) < ω(gj), if Ai is
smaller than Aj or, if equal, members(gi) < members(gj) in lexical order or, if equal,
the internal connections of group gi have less weight than the internal connections of
group gj in lexical order.

Note that this definition implies that the weight of a parent group is always higher
than the weight of any of its members. This property is required for ensuring that the
minimum admissible overlay graph introduced in Definition 3 is well defined, and that
our distributed algorithm converges.

Definition 2. An overlay graph G′ is called admissible if its corresponding topology has
a single root group groot where all terminal nodes are gateway nodes: Tgroot ⊆ Π′′.

Recall that we assumed that all gateway nodes are fully connected among themselves
(via some backbone). The following Theorem 1 shows that no more than 2k − 2 gateway
nodes are necessary to construct an admissible overlay graph.

Theorem 1. For every graph G with n′ ≥ 1 and n′′ ≥ 2k − 2, there exists an admissible
overlay graphG′.

Proof. Consider the topology corresponding to an overlay graph G′, where all regular
nodes are used up for constructing a possibly incomplete subgroup X , like group E in
4Note that the member function is not transitive.
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Figure 1b. As it is incomplete, up to k − 1 gateway nodes are required to complete X .
A root group groot where all terminal nodes are gateway nodes, i.e., no regular node with
an external connection is left, can be constructed by forming a group groot consisting of
X and k − 1 additional gateway nodes. This construction hence requires at most 2k − 2
gateway nodes.

By introducing a suitable minimum criterion, we can even stipulate the existence of a
unique minimal admissible overlay graph. Note carefully that this is not necessarily the
global minimum-weight overlay graph, but rather the minimal one w.r.t. all alternative ad-
missible topology constructions subject to the particular minimum criterion. Informally,
the minimum criterion defined below requires that, for any group member x of a minimal
group, the weight-sum of all internal connections is minimal over all alternative minimal
group constructions involving x. Every member of a minimal group must hence arrive at
the conclusion that there is no better choice, i.e., they must agree on minimality. Still, the
range of alternative choices is restricted by this requirement: Although it could of course
be the case that a lower-weight alternative group existed for some member, this choice
would lead to a violation of the minimum requirement for some other group and must
hence abandoned.

Definition 3. An admissible overlay graph G′ is minimal if, for every member x ∈
members(g) of any group g ∈ G in the corresponding topology tree, no alternative group
g′ can be built with x ∈ members(g′), ω(g′) < ω(g) and ∀y ∈ members(g′) : ω(g′) <
ω(gy), where gy is the (unique) group in the topology tree with y ∈ members(gy).

Theminimumadmissible graph is well-defined: Choosing a new group according to this
criterion does not lead to a violation of the minimality of any already existing group in
the final topology, since Definition 1 ensures that a higher-level group has a higher weight
than any of its members. Similarly, Theorem 1 holds also for the minimum admissible
overlay graph, since the edge weights for gateway nodes have been chosen in a way
that guarantees that regular nodes are always preferred by the minimum criterion. The
following Theorem 2 proves that the minimum admissible overlay graph indeed exists
and is unique.

Theorem 2. For every graphG with n′ ≥ 1 and n′′ ≥ 2k−2, there is exactly one minimal
admissible overlay graph G′.

Proof. We first show that at least one minimal admissible overlay graph exists, by induc-
tively constructing minimal groups one after the other and showing that those groups are
stable, i.e., not destroyed during later construction steps. For i ≥ 1, let gi be the group
added in the i-th step of this construction and Gi−1 be the set of groups constructed in
steps 1, . . . , i − 1, with G0 = Π denoting the set of all nodes (by convention, we assume
that ω(x) = 0 for a single-node “group” x ∈ Π).
For i = 1, g1 is the (unique) group with minimal ω(g1) chosen among all “groups”
(nodes) in G0. Clearly, g1 is minimal and trivially stable. For gi, i > 1, we choose the
group with minimal weight ω(gi) formed from groups in Gi−1. Clearly, all members of gi

agree upon this as the minimal choice. It remains to be shown, however, that the choice
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1 if a new proposal is provided by a propose module
2 if ( all particpants agree that the proposal is better than their current parent group )
3 all participants join the proposed new group [ atomically ]
4
5 periodically
6 check for group consistency
7 if group is consistent
8 recalculate group weight
9 else
10 all participants leave the group

Figure 2: Construction Algorithm

to include some member x ∈ Gi−1 in gi does not violate the minimum criterion for some
earlier built group g ∈ Gi−1, which might already have x as a member.
So assume that it is the case that x is a member of both gi and g with ω(gi) < ω(g),
and let j < i be the step where g has been built. Our definition of the group weight ω(.)
ensures that any higher-level group must have a weight higher than the weight of every
member. However, since gi is also built, in steps j, . . . , i, out of some groups in Gj−1,
ω(gi) < ω(g) implies that g cannot have been the minimal agreed choice for x in step j.
This provides the required contradiction.
Finally, since Theorem 1 holds also for this inductive construction, it is ensured that all
regular nodes are used up before gateway nodes are considered. Hence, the root group
can be built since at least 2k − 2 gateway nodes are available.
It still remains to be shown that the minimal overlay graph is unique. So let us assume
that there exist two admissible overlay graphsG′

1 and G′
2, which are both minimal. Going

up the topology tree of G′
1 and G′

2, at some depth the group structure must be different.
More specifically, there must be a group member x in some group gi in G′

1 which is
member in some other (= not corresponding) group gj in G′

2. Recall that a node or a
group can only be member of at most one group. However, either gi ofG′

1 or gj ofG′
2 has

lower weight, which implies that the admissible overlay graphsG′
1 andG′

2 cannot both be
minimal according to Definition 3.

The following theorems establish some important properties of our overlay graphs.

Theorem 3. In every admissible overlay graph G′ the node degree is bounded by k and
all regular nodes have degree k.

Proof. Obvious from the topology construction and Definition 2.

Theorem 4. Each admissible graph G′ with n′′ ≥ 2k − 2 is k-connected.

See [6] for the Proof.
Our results reveal several interesting features and advantages of our approach. First
of all, connection weights may be arbitrary; in particular, they need not to satisfy the
triangle inequality. Moreover, by adding additional constraints to Definition 3, overlay
graphs with specific additional properties can be built.
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If the weights in the communication graph reflect physical distance, our minimal topol-
ogy construction clusters nodes according to their spatial density.

5 The Distributed Construction Algorithm
In this section, we briefly present5 a fully distributed algorithm that builds up and contin-
uously maintains the minimal admissible overlay graph in dynamic environments.
For our system model, we assume a fully connected asynchronous system with reliable
links, where nodes may crash and connection weights are possibly time-variant. Late join-
ing of nodes is allowed, but no (undetected) crash and recovery. Our algorithm requires
a weak non-blocking atomic commitment service like the one of [8], which is invoked by
the candidate members of a to-be-formed group.
In our algorithm, every node and existing group (that is, their terminal nodes) con-
currently searches for the minimal-weight next-level group to join. For this purpose ev-
ery node repeatedly generates proposals P , consisting of the group members, the group
weight, the group internal connections and the group’s terminal nodes, which are sent to
(the terminal nodes of) the proposed group members for confirming minimality. Gener-
ating a new proposal is typically triggered periodically, to facilitate adaption to changed
connection weights, or upon detection of a node crash or join. Figure 2 give a high level
pseudo-code description of our algorithm.
The structure of our algorithm allows to encapsulate the functionality of generating
proposals in a dedicated propose module. Its most general specification is given by Defi-
nition 4.

Definition 4. A propose module generates proposals for groups consisting of k members,
k terminal nodes, group internal connections and the corresponding group weight. A
propose module is perfect if it eventually generates proposals corresponding to groups in
the final (unique) minimal overlay graph G′.

Our analysis [6] reveals that the algorithm of Figure 2 guarantees convergence (to the
unique minimal overlay graph) for every reasonable propose module. Speed of conver-
gence as well as message and time complexity strongly depend on the propose module
actually used. In fact, different propose modules presented in [9] allow to trade message
complexity for convergence speed and minimality: The worst case total message com-
plexity for constructing an admissible overlay graph with n nodes ranges from O(n) to
O(nk+1), the worst case time complexity ranges between O(n) and O(n2). Our simu-
lation experiments (see [9] for details) reveal good average case complexity and small
stretch factors for various propose modules.

6 Extension
A drawback of the topology construction method of Section 4 is that it is not particularly
efficient for very dynamic environments. A node that joins or leaves the network could
trigger a complete restructuring of the topology. Consider the case where a node p ∈ Tgi

with gi ∈ members(groot) leaves the network, for example: All groups g with p ∈ Tg have
to be rebuilt on that occasion. In this section, we introduce an extension of our method
5See [7] for a detailed explanation of the algorithm and its complete correctness proof.

97



BERND THALLNER, HEINRICH MOSER

(a) (b) (c)

4 5

67

1 2

4
3

5

67

B

A

3
5

67

B’ B’

211

3

Figure 3: Regular and extended group structure

that allows nodes to join and leave a group without reconstructing the entire topology, by
keeping changes local. The extended topology construction algorithm also induces a low
weight—although not the minimal—overlay graph G∗ = (Π′ ∪ B, C) with B ⊆ Π′′ and
C ⊆ Λ that is k-regular for regular nodes and k-connected if n′′ ≥ 2k − 2 and k is even,
or k − 1-connected if k is odd.
Figure 3a shows an example of a group and its parent group with k = 4. Figure 3b and
3c depict the restructured group after successively removing nodes 2 and 4. The groups
A and B are merged together to form a new group B ′ which has more than k members.
The topology outside B and inside the members of A and B (except A) is not changed.
Note that the number of terminal nodes of B ′ does not change, and that nodes 1 and 3 in
3b as well as 1 and 2 in 3c have no external connections.
We now give a formal description of our extended topology: Extended groups consist
of an identifier g∗

i ∈ G and the set of members(g∗
i ) ⊆ (G ∪ Π) consisting of k + 1 ≤

members(g∗
i ) ≤ 2k − 2 members. The set of terminal nodes of an extended group g∗

i

consists of exactly k nodes. Since |Tg∗i | = k, there is hence no difference between an
extended and a regular group for an external node or group. The set of members g ∈
members(g∗

i ) of group g∗
i consists of terminal members with ∃p ∈ nodes(g) and p ∈ Tg∗i

and internal members with �p ∈ nodes(g) and p ∈ Tg∗i . We denote the number of internal
members for an extended group g∗

i by Ig∗i = |members(g∗
i )| − k (1 ≤ Ig∗i ≤ k − 2).

Note that a regular group gi can be seen as an extended group with Igi
= 0.

An extended group g∗
i is constructed as follows:

1. Each internal member of g∗
i has a connection to each terminal member. Since there

are k terminal members, each internal member has k connections.

2. Each terminal member of g∗
i has one external connection, Ig∗i connections to internal

members and k − 1− Ig∗i connections to other terminal members if k is even. If k is
odd, at most one terminal member has k−2− Ig∗i connections instead of k−1− Ig∗i
to the other terminal members.

The group weight of an extended group ω(g∗
i ) is defined analogously to Definition 1,

except that the sum of the g∗
i group internal connections is normalized to the number of

connections of a regular group: k·sum of int. con.
k+Ig∗

i

.
We have the following major result:
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Theorem 5. The graph G′ with n′′ ≥ 2k − 2 and extended groups is k-connected if k is
even.

See Theorem 8 in [6] for the Proof.
Accommodating extended groups in the distributed algorithm of Section 5 requires only
a few adaptations related to node joins and leaves:
– If a new node appears, it is integrated into some nearby group gi 	= groot as internal
member.
– If a node p ∈ Πwith p ∈ members(gi), gi ∈ members(gj) and gj 	= groot leaves the
group, an extended group g∗

j is built withmembers(g∗
j ) = (members(gj) \ {gi}) ∪

(members(gi)\{p}). The group gi is removed. If p /∈ Tgj
then Tg∗j = Tgj

; if p ∈ Tgj

then Tg∗j = (Tgj
∪ {q}) \ {p} with q ∈ (Tgi

\ {p}). In the latter case, a higher level
group ga where p /∈ Tga but p ∈ Tgb

with gb ∈ members(ga) has to build a new
connection to the new terminal node q, cf. Figure 3c.
– If extended groups, regular groups and nodes are merged and the number of mem-
bers of the new extended group would become |members(g∗

j )| ≥ k + k − 1, a new
regular group with k members and minimal weight is built and integrated as a sin-
gle member into the new (extended) group. Note that restructuring proceeds in the
opposite direction, from the root to the leaves of the tree, in this case.

Introducing extended groups provides a number of additional benefits. For example,
a node that is k or k − 1-node-connected to the network preserves this property even
when topology reconstruction is in progress. Most importantly, extended groups permit
us to weaken the fully connected communication graph assumption: Non-existing edges
(x, y,∞) ∈ Λ were disallowed in Section 3, since x and y must not become members
of a common group—even if it is the only choice for them—if they cannot communicate
with each other. With extended groups, this situation can be handled by just allowing x
and y to join some nearby group as internal nodes. Particularly promising in this respect
is a hybrid approach, which allows extended groups only above some particular level in
the topology tree.
Furthermore extended groups can be used to construct a modular topology where the
regular and more complex construction is used only below some particular tree level. The
construction is therefore divided into independent parts and the number of nodes used
for the regular topology construction algorithm is reduced according to the particular tree
level and therefore independent of the actual number of nodes n in the system. This is
particular beneficial for low power devices with a large number of nodes.

7 Conclusions and Future Research
We presented and analyzed a distributed fault-tolerant algorithm for constructing a topol-
ogy (overlay graph) for fault-tolerant communication in wireless ad hoc networks. The
constructed overlay graph is k-regular, k-connected, ensures failure locality and has low
total weight. The algorithm adapts to a dynamically changing environment, is guaranteed
to converge, and exhibits quite reasonable performance. The hierarchy of clusters reflects
the spatial density of the nodes and might replace some additional under- and overlay
clusters algorithms.
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Part of our current/future research is devoted to some extensions of our approach. First
of all, although our algorithm generates topologies with low total weight, the question of
their sub-optimality with respect to the unique minimal k-connected and k-regular overlay
graph arises. A related question concerns the achievable spanning factors.
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