<section-header><section-header><section-header><section-header><section-header><section-header><text></text></section-header></section-header></section-header></section-header></section-header></section-header>	 Overview Introduction Hybrid Approach Modified Approach Approaches Compared Automated Measurement System Summary 		
Department of Computer Science	Marcus Thoss 1 Department of Computer Science		
Introduction The challenge: timing measurements of distributed real-time systems • Requirements: • high accuracy • common ("global") time base • using embedded systems: limited facilities • Additional requirements for this study: • record single events • end-to-end delays of communication events • large number of measurement runs ⇒ unattended operation • Pratical approach preferred, matching goals with minimum effort	 Initial decisions derived: End-to-end delay ⇒ local clock timestamps not sufficient Dedicated clock source provides global time at observer Events are best generated locally timestamp is determined by observer recording the event hybrid approach Limited scope of "global" time as assumed here: nodes within the experiment time span covering the experiment Experiment conduction and analysis should be automated 		

Hybrid Approach

Combining local / centralised timestamp recording / processing

- Determining the occurrence of an event ٠
 - event is determined locally •
 - thus: close integration of event generation code and its context
 - events are exposed to an observer instance (device)
 - here: dedicated event signalling connections at hardware level
- Mapping of events to timestamps
 - · exposed events are recorded by a central device
 - a high-accuracy clock source within the recording device is used to timestamp every event within a common time base ("global clock")
 - · event context information (also exposed at event generation) is recorded with the timestamp for subsequent event identification/correlation

Hybrid Approach

Implementation Strategy

- Instrumentation of application code provides event signaling and counter value on PC parallel port
- Logic analyser records events with timestamps and counter value (context)
- Customized logic analyser recording state machine allows
 - · long-term and high resolution time stamp acquisition
 - single event recording with multiple event sources
 - true end-to-end latency measurement (common time base)

Marcus Thoss	4	Department of Computer Science	Marcus Thoss	5	Department of Computer Science
Wiesbaden University of Applied Sciences		WISES 2005, Hamburg May 20th 2005	Wiesbaden University of Applied Sciences		WISES 2005, Hamburg May 20th 2005

Hybrid Approach

Correlation of send/receive event pairs based on counter values

Characteristics:

- 10 ns logic analyser resolution
- 17µs latency for event occurrence \rightarrow logic analyser capture ٠
 - mostly through I/O driver for parallel port access
 - 0.1 µs mean probable error

Modified Approach

- Motivation: greater number of nodes, more context data capabilities of original implementation are exceeded
- Local clocks are used to capture timestamps \Rightarrow common time base is initially lost
- For each measured node, establish a reference timestamp on the central timing device
 - reference timestamps are taken at beginning / end of measurement
 - procedure equals "original approach"
- Regain "global time" by mapping of local timestamps to logic analyser time

7

- mapping is performed off-line after the measurement
- timestamp data may remain distributed

10

10

Marcus Thoss

WISES 2005, Hamburg May 20th 2005

Modified Approach

Mapping of local timestamps

- · Assumed: merely linear clock drift within each node
- For reference timestamps T_{LA1,2}, local timestamps T_{PC1,2} have been recorded
- \Rightarrow Local timestamps t_{pcn} can be mapped to "global" timestamps t_{LAn}:

$$t_{LAn} = (t_{PCn} - T_{PC1}) \cdot \frac{T_{LA2} - T_{LA1}}{T_{PC2} - T_{PC1}} + T_{LA1}$$

Approaches Compared

Limitations using local clocks

- · Non-linear drift is not regarded
 - \Rightarrow not suitable for variable processor clock speed and/or significant thermal changes affecting the clock speed
- Resolution and accuracy of the local clock must be sufficient

Benefits using local clocks

· Reduced overhead for taking timestamps

Automated Measurement System

UDP

config.

operator

PC

Operator PC runs control application as Excel VBA module

NT 3 is connected to logic analyser, vendor provided control

Experiment schedule UI for parameter preparation / execution

application is wrapped by custom OLE Automation server

Remote control of NT1 / NT2 through UDP communication

Finally: automated sample import into Excel + analysis

11

Tx Node

NT 1

Excel VBA

control application

OLE Automation

server

logic analyser

contro

NT 3

- · No I/O access for event signalling: jitter is reduced
- · Allows greater number of measurement nodes
- · Context data can be more complex because it is kept locally

Marcus Thoss	8	Department of Computer Science)	Marcus Thoss	9	Department of Computer Science
Wiesbaden University of Applied Sciences		WISES 2005, Hamburg May 20th 2009	5	Wiesbaden University of Applied Sciences		WISES 2005, Hamburg May 20th 2005

Automated Measurement System

Motivation for automated measurement, from study experiment:

- all permutations of parameter settings should be measured
- \Rightarrow 400 measurements * 400 samples = 160,000 samples
- ⇒ experiment conduction / sample management and analysis likely to become tedious and error-prone
- Solution: Measurement control application on operator PC
 - experiment setup
 - variation of experiment parameters
 - control of experiment run/stop and data acquisition
 - sample data management
 - send/receive event correlation
 - automated statistical analysis and diagram generation

٠

10

Marcus Thoss

added for

control

experiment

from vendor

payload

config I/F

Rx Node

NT 2

UDP

config.

Example Diagrams Showing Single Event Data

- · Only possible using single event recording
- Singular exceptions visible (here: packets violating QoS)
- Appearance of artifacts, resulting from secondary effects

Summary

- Two aspects combined, forming a versatile measurement system

 hybrid high-accuracy measurement
 - · automated experiment conduction and analysis
- · Single event recording preserving singular phenomena
- · Automated operation: saving time, reducing errors
- · Early judgements supported by analysis generation
- · Usability and accuracy have been verified
 - accompanying application study
- · Measurement system has been reused in several research projects
- · Future extensions and enhancements planned

Marcus Thoss	12	Department of Computer Science	10	Marcus Thoss	13	Department of Computer Science	10