Using RTAI/LXRT for Partitioning in a Prototype Implementation of the DECOS Architecture

B. Huber, P. Peti, R. Obermaisser, and C. El-Salloum

Vienna University of Technology

TU

Overview

VIENNA

VIENNA

- DECOS Integrated Architecture
- DECOS Component Model
- Two Dimensions of Partitioning
- Prototype Implementation
- RTAI/LXRT Execution Environment
- Results

Bernhard Huber

Using RTAI/LXRT for Partitioning in a Prototype Implementation of the DECOS Arch 20-05-2005 | Slide 2

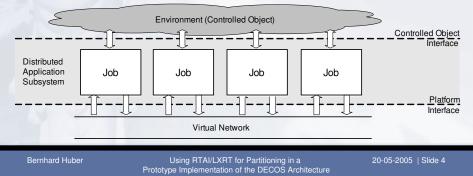
VIENNA

Vienna University of Technology

The DECOS Integrated Architecture

- Dependable Embedded COmponents and Systems
- Research project founded by the European Commission under FP6
- Architecture for distributed embedded real-time systems mainly aimed at automotive and avionics domain
- An integrated architecture that combines the benefits of integrated and federated architectures

Job Job Job Job Job Job Job Job **High-Level Services** Encapsulation, Virtual Networks, Diagnosis, Core Services C1 Predictable Message Transport C2 Fault-Tolerant Clock Synchronization C3 Strong Fault Isolation Consistent Diagnosis of Failing Nodes Time-Triggered Core Architecture Hiding of implementation details from the application, thereby extending the range of implementation choices (e.g. TTP/C, Time-Triggered Ethernet)


Application

Bernhard Huber Using RTAI/LXRT for Partitioning in a Prototype Implementation of the DECOS Architecture 20-05-2005 | Slide 3

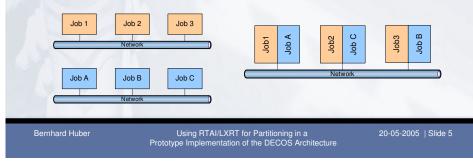
Vienna University of Technology

Distributed Application Subsystem

- Nearly independent distributed subsystem
- Exploit specific platform services
- Infrastructure tailored to the needs of the DAS (e.g., TT or CAN communication)

Vienna University of Technology

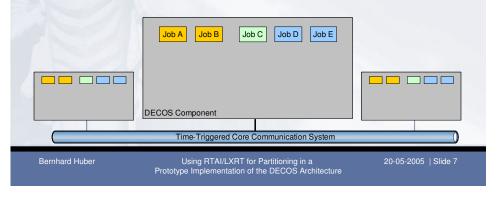
Federated System vs. Integrated System


• Federated Architecture: Each DAS has its own distributed computer system, i.e. a dedicated communication infrastructure, dedicated hardware elements etc.

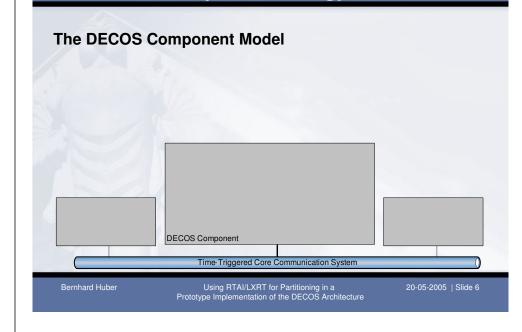
Τl

VIENNA

VIENNA

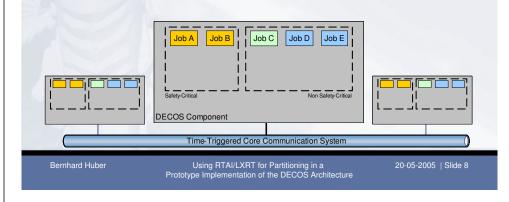

• Integrated Architecture: Multiple DASs (possibly with different criticality levels) are integrated within a single distributed computer system.

Vienna University of Technology

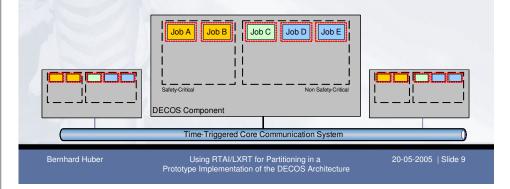

The DECOS Component Model

Jobs of different DASs hosted on the same component

Vienna University of Technology

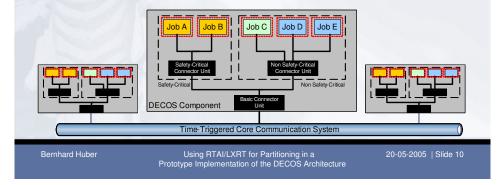

VIENNA

Vienna University of Technology


The DECOS Component Model

- · Jobs of different DASs hosted on the same component
- Support for mixed criticality

The DECOS Component Model


- Jobs of different DASs hosted on the same component
- Support for mixed criticality
- Encapsulated Execution Environment for each Job

Vienna University of Technology

The DECOS Component Model

- Jobs of different DASs hosted on the same component
- Support for mixed criticality .
- Encapsulated Execution Environment for each Job
- Encapsulated Virtual Communication Service for each DAS

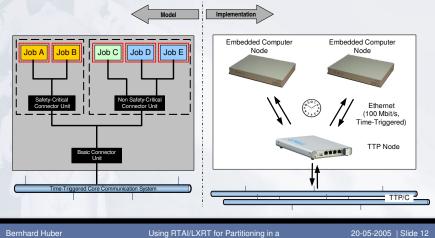
Vienna University of Technology

VIENNA

Τl

VIENNA

Two Dimensions of Partitioning


- **Spatial Partitioning**
 - Preventing jobs from overwriting memory elements of other jobs (data and code) ٠
 - Preventing jobs from interfering with other jobs in the access of devices

Temporal Partitioning

Preventing jobs from disturbing the timing of other jobs (e.g. by holding a shared • resource like the CPU)

Vienna University of Technology

Prototype Implementation

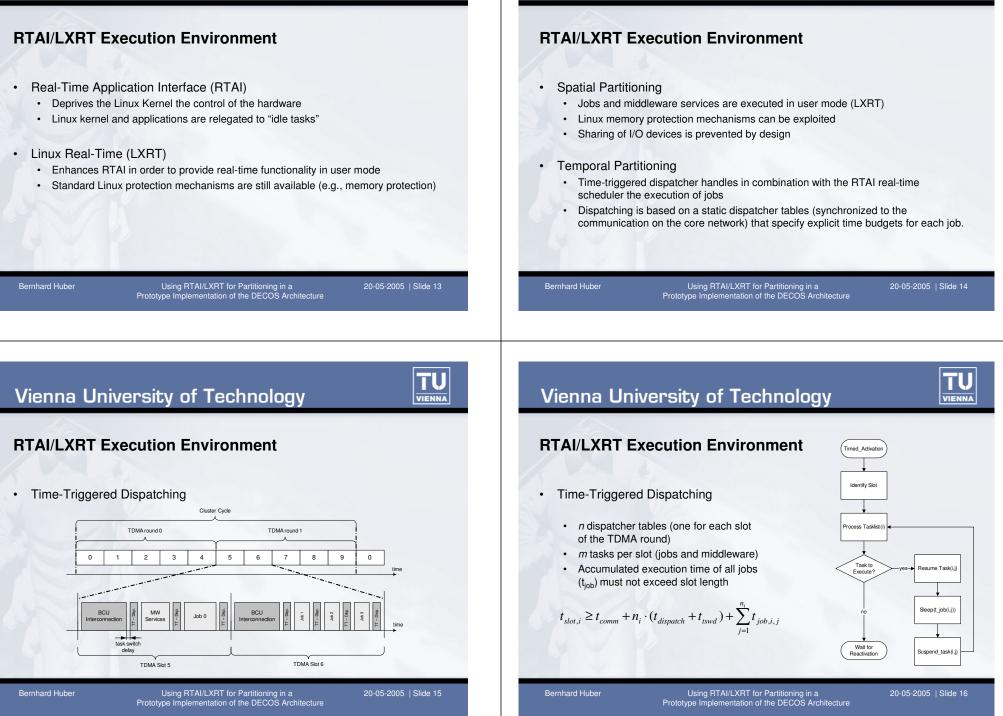
Bernhard Huber

Using RTAI/LXRT for Partitioning in a Prototype Implementation of the DECOS Architecture 20-05-2005 | Slide 11

Prototype Implementation of the DECOS Architecture

20-05-2005 | Slide 12

VIENNA


VIENNA

Vienna University of Technology

TU

Vienna University of Technology

Vienna University of Technology

Results

- Independence between Partitions
 - No constraints on execution time of jobs they cannot exceed their assigned time budget
 - Memory Protection is ensured by operating system mechanisms
 - Unexpected termination of any job has no influence on other jobs or middleware
- Overhead
 - Minimal and constant overhead introduced by the time-triggered dispatcher (18µs)
 - Low overhead introduced by RTAI task switch (40µs to 65µs)
- Transparency to Jobs and Middleware
 - Jobs and middleware are developed as "usual" Linux applications
 - Intellectual property (IP) protection is supported
 - RTAI/LXRT specific functionality is linked at system integration

Bernhard Hube

Using RTAI/LXRT for Partitioning in a ? Prototype Implementation of the DECOS Architecture

20-05-2005 | Slide 17

Bernhard Huber

Using RTAI/LXRT for Partitioning in a Prototype Implementation of the DECOS Architecture

20-05-2005 | Slide 18

Vienna University of Technology

Thank you for your attention!

Any Questions?