
Using RTAI/LXRT for Partitioning
in a Prototype Implementation

of the DECOS Architecture

B. Huber, P. Peti, R. Obermaisser, and C. El-Salloum

Bernhard Huber Using RTAI/LXRT for Partitioning in a 20-05-2005 | Slide 2
Prototype Implementation of the DECOS Architecture

Overview

• DECOS Integrated Architecture
• DECOS Component Model
• Two Dimensions of Partitioning
• Prototype Implementation
• RTAI/LXRT Execution Environment
• Results

Bernhard Huber Using RTAI/LXRT for Partitioning in a 20-05-2005 | Slide 3
Prototype Implementation of the DECOS Architecture

The DECOS Integrated Architecture

����������	�
����������	�
����������	�
����������	�

C1 Predictable Message

Transport
C2 Fault-Tolerant

Clock Synchronization
C3 Strong Fault Isolation
C4 Consistent Diagnosis

of Failing Nodes

��� �����������

��	����	����

���������������������������	�
�����������	�
�����������	�
�����������	�

Encapsulation , Virtual
Networks, Diagnosis,...

JobJobJob

�����	����������	����������	����������	�����

Job JobJob JobJob
������������ ������������

�����
�����
�����
�����
	����	��	����	��	����	��	����	��

����
���������
���������
���������
�����
	����	��	����	��	����	��	����	��

JobJob

����
���������
���������
���������
�����
	����	���	����	���	����	���	����	���

�����
�����
�����
�����
	����	���	����	���	����	���	����	���

������������������������

��� �����������

�������	����	����
Hiding of implementation details from
the application, thereby extending the

range of implementation choices
(e.g. TTP/C, Time-Triggered Ethernet)

• Dependable Embedded COmponents
and Systems

• Research project founded by the
European Commission under FP6

• Architecture for distributed embedded
real-time systems mainly aimed at
automotive and avionics domain

• An integrated architecture that combines
the benefits of integrated and federated
architectures

Bernhard Huber Using RTAI/LXRT for Partitioning in a 20-05-2005 | Slide 4
Prototype Implementation of the DECOS Architecture

Distributed Application Subsystem

• Nearly independent distributed subsystem
• Exploit specific platform services
• Infrastructure tailored to the needs of the DAS (e.g., TT or CAN

communication)

Controlled Object
Interface

Distributed
Application
Subsystem

Platform
Interface

Environment (Controlled Object)

Job Job Job Job

Virtual Network

Bernhard Huber Using RTAI/LXRT for Partitioning in a 20-05-2005 | Slide 5
Prototype Implementation of the DECOS Architecture

Federated System vs. Integrated System

Network

Jo
b1

Jo
b3

Jo
b2

Jo
b

A

Jo
b

C

Jo
b

B

• Federated Architecture: Each DAS has its own distributed computer
system, i.e. a dedicated communication infrastructure, dedicated hardware
elements etc.

• Integrated Architecture: Multiple DASs (possibly with different criticality
levels) are integrated within a single distributed computer system.

Network

Job 1 Job 3Job 2

Network

Job A Job CJob B

Bernhard Huber Using RTAI/LXRT for Partitioning in a 20-05-2005 | Slide 6
Prototype Implementation of the DECOS Architecture

The DECOS Component Model

DECOS Component

Time-Triggered Core Communication System

Bernhard Huber Using RTAI/LXRT for Partitioning in a 20-05-2005 | Slide 7
Prototype Implementation of the DECOS Architecture

The DECOS Component Model
• Jobs of different DASs hosted on the same component

DECOS Component

Time-Triggered Core Communication System

DECOS Component

Time-Triggered Core Communication System

Job A Job B Job C Job D Job E

Bernhard Huber Using RTAI/LXRT for Partitioning in a 20-05-2005 | Slide 8
Prototype Implementation of the DECOS Architecture

The DECOS Component Model
• Jobs of different DASs hosted on the same component
• Support for mixed criticality

DECOS Component

Time-Triggered Core Communication System

DECOS Component

Time-Triggered Core Communication System

Job A Job B Job C Job D Job E

DECOS Component

Time-Triggered Core Communication System

Job A Job B Job C Job D Job E

Safety-Critical Non Safety-Critical

Bernhard Huber Using RTAI/LXRT for Partitioning in a 20-05-2005 | Slide 9
Prototype Implementation of the DECOS Architecture

The DECOS Component Model
• Jobs of different DASs hosted on the same component
• Support for mixed criticality
• Encapsulated Execution Environment for each Job

DECOS Component

Time-Triggered Core Communication System

DECOS Component

Time-Triggered Core Communication System

Job A Job B Job C Job D Job E

DECOS Component

Time-Triggered Core Communication System

Job A Job B Job C Job D Job E

Safety-Critical Non Safety-Critical

DECOS Component

Time-Triggered Core Communication System

Job A Job B Job C Job D Job E

Safety-Critical Non Safety-Critical

Bernhard Huber Using RTAI/LXRT for Partitioning in a 20-05-2005 | Slide 10
Prototype Implementation of the DECOS Architecture

The DECOS Component Model
• Jobs of different DASs hosted on the same component
• Support for mixed criticality
• Encapsulated Execution Environment for each Job
• Encapsulated Virtual Communication Service for each DAS

DECOS Component

Time-Triggered Core Communication System

DECOS Component

Time-Triggered Core Communication System

Job A Job B Job C Job D Job E

DECOS Component

Time-Triggered Core Communication System

Job A Job B Job C Job D Job E

Safety-Critical Non Safety-Critical

DECOS Component

Time-Triggered Core Communication System

Job A Job B Job C Job D Job E

Safety-Critical Non Safety-Critical

DECOS Component

Time-Triggered Core Communication System

Job A Job B Job C Job D Job E

Safety-Critical Non Safety-Critical

Safety-Critical
Connector Unit

Non Safety-Critical
Connector Unit

Basic Connector
Unit

Bernhard Huber Using RTAI/LXRT for Partitioning in a 20-05-2005 | Slide 11
Prototype Implementation of the DECOS Architecture

Two Dimensions of Partitioning

• Spatial Partitioning
• Preventing jobs from overwriting memory elements of other jobs (data and code)

• Preventing jobs from interfering with other jobs in the access of devices

• Temporal Partitioning
• Preventing jobs from disturbing the timing of other jobs (e.g. by holding a shared

resource like the CPU)

Bernhard Huber Using RTAI/LXRT for Partitioning in a 20-05-2005 | Slide 12
Prototype Implementation of the DECOS Architecture

Prototype Implementation

Time-Triggered Core Communication System

Job A Job B Job C Job D Job E

Safety-Critical
Connector Unit

Non Safety-Critical
Connector Unit

Basic Connector
Unit

ImplementationModel

Embedded Computer
Node

Embedded Computer
Node

TTP Node

Ethernet
(100 Mbit/s,

Time-Triggered)

TTP/C

Bernhard Huber Using RTAI/LXRT for Partitioning in a 20-05-2005 | Slide 13
Prototype Implementation of the DECOS Architecture

RTAI/LXRT Execution Environment

• Real-Time Application Interface (RTAI)
• Deprives the Linux Kernel the control of the hardware
• Linux kernel and applications are relegated to “idle tasks”

• Linux Real-Time (LXRT)
• Enhances RTAI in order to provide real-time functionality in user mode
• Standard Linux protection mechanisms are still available (e.g., memory protection)

Bernhard Huber Using RTAI/LXRT for Partitioning in a 20-05-2005 | Slide 14
Prototype Implementation of the DECOS Architecture

RTAI/LXRT Execution Environment

• Spatial Partitioning
• Jobs and middleware services are executed in user mode (LXRT)
• Linux memory protection mechanisms can be exploited
• Sharing of I/O devices is prevented by design

• Temporal Partitioning
• Time-triggered dispatcher handles in combination with the RTAI real-time

scheduler the execution of jobs
• Dispatching is based on a static dispatcher tables (synchronized to the

communication on the core network) that specify explicit time budgets for each job.

Bernhard Huber Using RTAI/LXRT for Partitioning in a 20-05-2005 | Slide 15
Prototype Implementation of the DECOS Architecture

RTAI/LXRT Execution Environment

• Time-Triggered Dispatching

0 1 2 3 4 5 6 7 8 9 0

TDMA round 0 TDMA round 1

MW
Services Job 0

BCU
Interconnection

TDMA Slot 5

task switch
delay

Cluster Cycle

BCU
Interconnection

TDMA Slot 6

Jo
b

 1

Jo
b

 2

Jo
b

 3

T
T

 –
 D

is
p

.

T
T

 –
 D

is
p

.

T
T

 –
 D

is
p

.

T
T

 –
 D

is
p

.

T
T

 –
 D

is
p

.

T
T

 –
 D

is
p

.

T
T

 –
 D

is
p.

time

time

Bernhard Huber Using RTAI/LXRT for Partitioning in a 20-05-2005 | Slide 16
Prototype Implementation of the DECOS Architecture

RTAI/LXRT Execution Environment

• Time-Triggered Dispatching

• n dispatcher tables (one for each slot
of the TDMA round)

• m tasks per slot (jobs and middleware)
• Accumulated execution time of all jobs

(tjob) must not exceed slot length

�
=

++⋅+≥
in

j
jijobtswddispatchicommislot tttntt

1
,,,)(

Process Tasklist(i)

Timed_Activation

Task to
Execute?

Sleep(t_job(i,j))

Suspend_task(i,j)

Resume Task(i,j)

Wait for
Reactivation

yes

no

Identify Slot

Bernhard Huber Using RTAI/LXRT for Partitioning in a 20-05-2005 | Slide 17
Prototype Implementation of the DECOS Architecture

Results
• Independence between Partitions

• No constraints on execution time of jobs – they cannot exceed their assigned time
budget

• Memory Protection is ensured by operating system mechanisms
• Unexpected termination of any job has no influence on other jobs or middleware

• Overhead
• Minimal and constant overhead introduced by the time-triggered dispatcher (18µs)
• Low overhead introduced by RTAI task switch (40µs to 65µs)

• Transparency to Jobs and Middleware
• Jobs and middleware are developed as “usual” Linux applications
• Intellectual property (IP) protection is supported
• RTAI/LXRT specific functionality is linked at system integration

Bernhard Huber Using RTAI/LXRT for Partitioning in a 20-05-2005 | Slide 18
Prototype Implementation of the DECOS Architecture

Thank you for your attention!

Any Questions?

