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Overview

• DECOS Integrated Architecture
• DECOS Component Model
• Two Dimensions of Partitioning
• Prototype Implementation
• RTAI/LXRT Execution Environment
• Results
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The DECOS Integrated Architecture

����������	�
����������	�
����������	�
����������	�

C1 Predictable Message 

Transport
C2 Fault-Tolerant       

Clock Synchronization
C3 Strong Fault Isolation
C4 Consistent Diagnosis 

of Failing Nodes
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Encapsulation , Virtual 
Networks, Diagnosis,...
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Hiding of implementation details from 
the application, thereby extending the 

range of implementation choices
(e.g. TTP/C, Time-Triggered Ethernet)

• Dependable Embedded COmponents
and Systems

• Research project founded by the 
European Commission under FP6

• Architecture for distributed embedded 
real-time systems mainly aimed at 
automotive and avionics domain

• An integrated architecture that combines 
the benefits of integrated and federated 
architectures
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Distributed Application Subsystem

• Nearly independent distributed subsystem
• Exploit specific platform services
• Infrastructure tailored to the needs of the DAS (e.g., TT or CAN

communication)
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Federated System vs. Integrated System

Network
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• Federated Architecture: Each DAS has its own distributed computer 
system, i.e. a dedicated communication infrastructure, dedicated hardware 
elements etc.

• Integrated Architecture: Multiple DASs (possibly with different criticality 
levels) are integrated within a single distributed computer system.

Network
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Network
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The DECOS Component Model

DECOS Component

Time-Triggered Core Communication System
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The DECOS Component Model
• Jobs of different DASs hosted on the same component

DECOS Component

Time-Triggered Core Communication System

DECOS Component

Time-Triggered Core Communication System
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The DECOS Component Model
• Jobs of different DASs hosted on the same component
• Support for mixed criticality

DECOS Component

Time-Triggered Core Communication System

DECOS Component

Time-Triggered Core Communication System
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The DECOS Component Model
• Jobs of different DASs hosted on the same component
• Support for mixed criticality
• Encapsulated Execution Environment for each Job

DECOS Component

Time-Triggered Core Communication System
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The DECOS Component Model
• Jobs of different DASs hosted on the same component
• Support for mixed criticality
• Encapsulated Execution Environment for each Job
• Encapsulated Virtual Communication Service for each DAS
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Two Dimensions of Partitioning

• Spatial Partitioning
• Preventing jobs from overwriting memory elements of other jobs (data and code)

• Preventing jobs from interfering with other jobs in the access of devices

• Temporal Partitioning
• Preventing jobs from disturbing the timing of other jobs (e.g. by holding a shared 

resource like the CPU)
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Prototype Implementation

Time-Triggered Core Communication System
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RTAI/LXRT Execution Environment

• Real-Time Application Interface (RTAI)
• Deprives the Linux Kernel the control of the hardware
• Linux kernel and applications are relegated to “idle tasks”

• Linux Real-Time (LXRT)
• Enhances RTAI in order to provide real-time functionality in user mode
• Standard Linux protection mechanisms are still available (e.g., memory protection)
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RTAI/LXRT Execution Environment

• Spatial Partitioning
• Jobs and middleware services are executed in user mode (LXRT)
• Linux memory protection mechanisms can be exploited
• Sharing of I/O devices is prevented by design

• Temporal Partitioning
• Time-triggered dispatcher handles in combination with the RTAI real-time 

scheduler the execution of jobs
• Dispatching is based on a static dispatcher tables (synchronized to the 

communication on the core network) that specify explicit time budgets for each job.
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RTAI/LXRT Execution Environment

• Time-Triggered Dispatching
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RTAI/LXRT Execution Environment

• Time-Triggered Dispatching

• n dispatcher tables (one for each slot 
of the TDMA round)

• m tasks per slot (jobs and middleware)
• Accumulated execution time of all jobs 

(tjob) must not exceed slot length
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Results
• Independence between Partitions

• No constraints on execution time of jobs – they cannot exceed their assigned time 
budget

• Memory Protection is ensured by operating system mechanisms
• Unexpected termination of any job has no influence on other jobs or middleware

• Overhead
• Minimal and constant overhead introduced by the time-triggered dispatcher (18µs)
• Low overhead introduced by RTAI task switch (40µs to 65µs)

• Transparency to Jobs and Middleware
• Jobs and middleware are developed as “usual” Linux applications
• Intellectual property (IP) protection is supported
• RTAI/LXRT specific functionality is linked at system integration
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Thank you for your attention!

Any Questions?


