
Hamburg Collegiate
Programming Contest

at Hamburg University of Technology

July 2011

Problem Set

Prof. Dr. Volker Turau
Christian Renner
Christoph Weyer

Sponsored by



This page is intentionally left (almost) blank.

2



Contents

A. Top Spin 2

B. Healthy Burglar App 4

C. Matchsticks 6

D. Caribbean Airlines 8

E. Hope for Konrad’s Team? 10

F. Fair-Trade Coffee 12

G. Car Wash 14

1



A :. Top Spin

Have you ever been to Heidepark Soltau? If so, you probably remember the Top Spin. That’s one
of these nasty fun rides that throws you around and lets you hang in the air upside-down. Since you
don’t like hanging upside-down, you stick to watching, but don’t want to get bored. So you find some
entertainment: You wonder how many people are going to be on each ride for the people currently in
line, hoping that this will keep you busy, until your friends (taking the current ride) will pick you up
again.

The whole thing could be very easy, if there were no groups of people. These groups have the silly
and annoying wish of not being split up, unless unavoidable, i.e., there are more people in the group
than seats per ride. To cope with that problem, you make up the following rules:

1. You split up groups with more persons than available seats into subgroups of sizes equal to
the total number of seats and one last subgroup consisting of the remaining persons. However,
there is one exception. The last subgroup must not consist of only one person (a person be-
longing to a group does not want to be on his or her own). To prevent that, you pull over one
person from the second-to-last subgroup.

2. Your group-splitting approach leaves you with a new line of groups. For this new line, you
apply a very simple seating scheme: Groups are seated with respect to their position in the
line until either no seat remains or there are only groups (in the whole line) larger than the
remaining number of seats. The latter implies that groups too large for the current ride are
skipped in favor of later but sufficiently small groups.

Input Specification
The first line of input contains the number of test cases, at most 100.

Each test case starts with a line holding 10 ≤ S ≤ 100, the number of seats in the Top Spin, and
1 ≤ G ≤ 1 000, the number of groups. Then follows one line with G integers (separated by single
blanks), the number 1 ≤ pi ≤ 200 of people per group. The left-most group of input is the first one
in line.

Output Specification
Per test case one line with the number of people actually seated in the successive rides of the Top
Spin.

Sample Data

Input Output

2
10 6
2 4 4 6 5 3
10 4
21 9 11 8

10 9 5
10 9 4 9 9 8

2



This page is intentionally left (almost) blank.

3



B :. Healthy Burglar App

The burglar scene has changed considerably. Nowadays, burglars are very picky about their health
and are particularly afraid of an herniated disk. Since you are an inventive salesman, you have
decided to create a smartphone app for the modern burglar.

Your app only requires a description (value and weight) of all items worth being stolen and a
critical weight. The latter is the maximum weight that the burglar can carry without risking an
herniated disk. The worst thing happening is that the burglar cannot leave the place due to too heavy
a load of stolen goods. The app therefore calculates the maximum possible profit (summed values
of items) with a total weight not exceeding the critical weight. The goal of your application is to
enable the burglar to decide whether his burglary will be profitable with a single break-in. As all
loose burglars know, never break in the same place twice!

Input Specification
The first line of input contains the number of test cases, at most 100.

Each test case starts with a line holding two integers: 1 ≤ N ≤ 30, the number of valueable
items, and 1 ≤ W ≤ 1 000, the critical weight. Thereafter follow two lines with N integers each.
The first line contains the values vi of the items, the second line contains the weights wi of the items
(1 ≤ vi, wi ≤ 100).

Output Specification
Per test case one line with the maximum profit.

Sample Data

Input Output

2
5 10
1 4 9 16 25
1 2 3 4 5
5 9
25 16 9 4 1
1 2 3 4 5

42
50

4



This page is intentionally left (almost) blank.

5



C :. Matchsticks

On your way home you unfortunately missed the bus and have to wait 20 minutes for the next one
to arrive. Since you get bored quickly, you decide to rack your brains a little. While trying to think
of something challenging, you spot a box of matchsticks on the ground. You pick it up, open it, and
find a few matchsticks. ”So there’s your challenge,” you think: ”How many different numbers could
I create using all matchsticks in the box?”.

Example: If you find 5 matchsticks (see sample cases), you can create the numbers 17, 71, 2, 3,
and 5. Note that numbers may begin with leading zeros, e.g., ”007” is a valid number.

Input Specification
The first line of input contains the number of test cases, at most 100.

Each test case consists of a single line with an integer 0 ≤ N ≤ 80, the number of matchsticks.

Output Specification
Per test case one line with the amount of possible numbers built from the matchstick digits.

Sample Data

Input Output

4
1
3
5
7

0
1
5
12

6



This page is intentionally left (almost) blank.

7



D :. Caribbean Airlines

Caribbean Airlines (CA) is a small airline. They offer connections between some islands of the
Caribbean. There is one flight per connection every day, if the connection is one-way. Some of the
connections are offered in both directions, so that there are two flights per day (one in each direction).
However, their concept is a little different: They do not own planes, but buy flight contingents from
other airlines, so that they don’t have to worry about ideal flight routes. They also have a unique
one-price policy, i.e., every flight costs a fixed amount of money, because they think this is what
costumers want.

Due to an increasing competition on the flight market, CA has decided to reduce the prices. At
the same time, they want to keep their flight network intact. At the moment, round-trips are possible
starting at every island that CA serves (possibly taking a few intermediate stops and with different
routes on the flights there and back). Since this is their second marketing strategy—they call it the
every-island round-trip guarantee—there is no way to cancel contingents violating this property.

The plan therefore is to identify the minimum ticket price while preserving the one-price policy
and every-island round-trip guarantee. To achieve this goal, the managers of CA have compiled the
charter costs for each flight provided by other airlines. They only considered the cheapest possibility
for each possible connection. In addition, they have calculated the minimum fee that must be added
to the charter costs enabling CA to operate profitably. The final ticket price will be the largest charter
cost of all selected connections plus the fee.

Since managers only plan but do not execute, they have hired a skilled computer scientist to tell
them the lowest possible ticket price. And as you may have guessed, that computer scientist is you!

Input Specification
The first line of input contains the number of test cases, at most 100.

Each test case starts with a line holding three integers: 2 ≤ I ≤ 200, the number of islands CA
currently serves; I ≤ C ≤ 2 · I · (I − 1), the number of available connections (charter flights), and
50 ≤ F ≤ 1 000, the fee per ticket (in cents, the currency at headquarters in Martinique is Euro).
Thereafter follow I lines with three integers oi, di, ci each, where oi is the origin of a flight, di is the
destination, and 1 000 ≤ ci ≤ 100 000 is the charter cost (in cent). Islands are numbered from 1 to I .

CA always has the same contingent of seats per flight, so you don’t have to worry about flight
capacities and passenger volumes. It is also safe to assume that the given connections meet the
every-island round-trip guarantee.

Output Specification
Per test case one line with the minimum ticket price (including the fee), which is neither violating
the one-price policy nor the every-island round-trip guarantee.

8



Sample Data

Input Output

2
3 6 100
1 2 1000
2 1 2000
2 3 3000
3 2 1500
1 3 2500
3 1 3500
4 7 200
1 2 1000
2 3 1000
3 4 1000
4 1 5000
4 3 2000
1 3 2500
3 1 3000

2600
3200

9



E :. Hope for Konrad’s Team?

Konrad is a fascinated handball fan. His team and last year’s champion is unfortunately not really
doing well this year. At some point of the season Konrad is wondering, if there is any hope left for
his team to defend their title. After Konrad has worked on the problem himself for quite a while, he
has realized that it’s not really that simple. He therefore asks you to help and tell him, if there is hope
left for his team.

Surely, you want to help him! However, you’re no handball fan at all, so that Konrad informs you
about the rules:

• The winner of a game receives two points, and the looser receives no point. If the game ends
in a tie, both teams split the points, i.e., each team receives one point.

• There are exactly two games between the same two teams per season

• Usually, teams have the same amount of games played. However, you must not count on that,
because there are quite a few games postponed this year.

• At the end of the season, the team with the most points is the new champion. If there is more
than one team with the same amount of points, the goal difference is used as a tie breaker.
However, no one can really foresee the precise results of upcoming games, so that Konrad
decides that there is hope for his team, if his team can end the season with either more or the
same amount of points as the second-best team.

Input Specification
The first line of input contains the number of test cases, at most 100.

Each test case starts with one line containing the name of Konrad’s team (a team name does not
contain blanks). Next is a line holding 2 ≤ T ≤ 20, the number of teams. Then follow T lines with
the current ranking. Each line contains the current rank of the team (1 ≤ R ≤ T ), the name of the
team (a string without blanks), and the number of points P of that team (0 ≤ P ≤ 4(T − 1)). After
the ranking follows a single line with an integer G (0 ≤ G ≤ T · (T − 1)), the number of remaining
games of the season, and thereafter G lines describing one game: each line contains the names of the
two playing teams (the team names are separated by a single blank).

Output Specification
Output ”YES”, if there is hope for Konrad’s team to win the championship, or ”NO HOPE”, if it is
not possible to win.

10



Sample Data

Input Output

4
Your_Team
3
1 Team_B 4
2 Team_C 2
3 Your_Team 2
2
Team_C Team_B
Team_C Your_Team
Your_Team
3
1 Team_B 4
2 Team_C 4
3 Your_Team 0
2
Team_B Team_C
Team_B Your_Team
Your_Team
3
1 Team_B 5
2 Your_Team 4
3 Team_C 1
1
Your_Team Team_C
Your_Team
3
1 Team_B 5
2 Team_C 3
3 Your_Team 2
1
Your_Team Team_C

YES
NO HOPE
YES
NO HOPE

11



F :. Fair-Trade Coffee

Bernd likes Coffee. He is really into a special, quite extra-ordinary and extra-expensive flavor from
a single producer on Java. Bernd is convinced that the producer’s original price of the coffee cannot
be that enormous, so that a large share of the final price stays within the distribution chain. Every
distributor is adding some percentage to his purchase price (per pound), making the coffee more
expensive. Bernd can only buy the coffee from vendors (vendors are the distributors directly selling
to costumers), that all offer his favorite coffee at the same price.

Due to fortunate circumstances (you better don’t ask!), Bernd has obtained a pretty good picture of
the distribution chains and the profit margins of each distributor. However, he does not know at what
prices the producer can sell his coffee to his distributors. Unfortunately, that’s precisely what Bernd
wants to know: Since he loves his coffee so much, he wants to make sure that he buys his coffee
from the vendor with the cheapest distribution chain, i.e., the profit for the producer is the highest
among all chains. Could you assist Bernd in finding out the maximum margin of the producer for
the cheapest distribution chain? It is safe to assume that all distributors buy their coffee at the lowest
price and that there is no limitation on the amount of coffee per distributor.

Input Specification
The first line of input contains the number of test cases, at most 100.

Each test case starts with a line holding an integer 1 ≤ D ≤ 1 000, the number of distributors. Then
follows one line with D integers 0 ≤ Mi ≤ 100 (1 ≤ i ≤ D), the profit margin of the distributor
with respect to his purchase price in percent (e.g., if Mi = 50 the i’th distributor sells the coffee for
150% of his purchase price). The third line per test case contains the integer 0 ≤ C ≤ 10 000, the
number of sales channels. Thereafter follow C lines with three integers b, s, and m (1 ≤ b, s ≤ D),
stating that distributor b buys coffee from distributor s, where s may offer a special price (margin)
0 ≤ m ≤ Ms. Some distributors don’t offer special prices (m = −1), so that Ms is the margin on
that channel.

The final four lines of a test case describe the distributors buying directly from the producer and
the vendors selling coffee to Bernd. The first line holds the integer 1 ≤ A ≤ 50, the number of
distributors acquiring from the producer. The next line contains these A producers, represented by
integers 1 ≤ a ≤ D. The third line holds the number 1 ≤ V ≤ 50 of vendors selling to Bernd. The
fourth line contains these V vendors, represented by integers 1 ≤ v ≤ D.

Output Specification
Per test case one line with the vendor guaranteeing the best purchase price for the producer and the
percentage of the final sales price that the producer receives (an absolute or relative error of 10−6

is accepted). If there is more than one vendor allowing for the same percentage, output the smaller
vendor number.

12



Sample Data

Input Output

2
5
10 20 30 40 50
6
2 1 -1
3 2 -1
4 3 -1
5 4 -1
4 1 -1
5 3 5
1
1
2
4 5
5
50 20 30 40 10
7
2 1 -1
3 2 -1
4 3 10
5 4 10
4 1 -1
5 3 -1
3 1 30
1
1
2
4 5

4 64.9350649351
5 57.7934462232

13



G :. Car Wash

Your friend Carmen is owning the well-known company Carmen’s Car Wash. Since the equipment,
i.e., the individual stations of the car wash, are considerably old, Carmen wants to invest into a
completely new refurbishment. She has therefore talked to the bank, who is willing to give her a
credit. Looking into the catalog of available machines, Carmen has figured that choosing an optimal
configuration is going to be quite difficult. For each station in the car wash, Carmen can choose from
a variety of machines coming at different costs and processing times.

Carmen has thought about her options for a long time: Most of her costumers complained about
long waiting times before entering the car wash. On busy days, the waiting time depends on the
slowest station. She therefore believes that it would be best to equip her car wash with stations, so
that the slowest station has the lowest possible processing time.

Carmen is very concerned about finding the optimal solution, but she doesn’t really like those
mathematical problems. Would you be so kind and help her out?

Input Specification
The first line of input contains the number of test cases, at most 100.

Each test case starts with a line holding 1 ≤ M ≤ 1 000, the number of machines Carmen
takes into consideration, and 0 ≤ C ≤ 1 000 000 000, the credit Carmen received from the bank.
Thereafter follow M lines with 4 entries separated by a single blank:

• station: A string telling what kind of station the machine is

• product ID: A string with the unique product ID in the catalog

• price: The price of the machine, 0 ≤ price ≤ 1 000 000

• time: The processing time of the machine for one car, 0 ≤ time ≤ 1 000 000 000

Output Specification
Per test case one line with the time needed by the slowest station in the new car wash

14



Sample Data

Input Output

1
18 800
prewash Prewash_Light 66 19
prewash Prewash_Star 103 17
prewash Prewash_Ultimate 156 15
prewash Prewash_Ultimate_II 219 12
foaming FoamParty_2000 36 14
mainwash MW3k 35 21
mainwash MW4k 88 18
mainwash MW5k 170 12
mirror_wash Starlet 52 14
underfloor_wash DirtKiller 54 14
underfloor_wash CornerMob 99 12
dryer WindStille 157 19
dryer LauesLueftchen 175 17
dryer SteifeBriese 210 15
dryer Orkan 293 12
polisher Shiny 18 12
polisher MoreShiny 30 15
waxing WaxProtector 4 14

15

15



LAST PAGE

16


