
UML 2.0 for modeling TinyOS components

Sebastian A. Bachmaier

Material Testing Institute

Universität Stuttgart

Stuttgart, Germany

sebastian.bachmaier@mpa.uni-stuttgart.de

Abstract— TinyOS' software architecture is based on the concept

of components. These components are visualized graphically in

many papers and documentation manuals. However, software

architects and authors use their own graphical representation,

usually. This makes it hard to understand new software quickly.

The Unified Modeling Language (UML) also knows the concept

of components. Although usually used in an object-oriented con-

text, the notion is more general and UML can be used for the

design of software architectures that do not base on the object-

orientation paradigm. UML is nowadays known to most software

engineers. The use of component diagrams as specified in UML

2.0 is therefore proposed for modeling TinyOS components, to

facilitate the exchange of TinyOS software designs.

Index Terms—UML 2.0, component diagram, TinyOS best

practice, modeling, software architecture

I. INTRODUCTION

The Unified Modeling Language (UML, [1]) is a standar-
dized notation for modeling software architectures, usually
used in the object oriented domain. UML includes therefore all
graphical elements to model object oriented software. Howev-
er, as UML is not a software development process but a nota-
tion only, it can be used in non-object oriented software devel-
opment and in general in other engineering disciplines as well.
UML consists of graphical notation elements and of diagram
types that can be constructed from the notation elements. The
graphical elements carry semantics in themselves but further
meaning can be added by special notation elements, like stereo-
types. UML comprises many traditional diagram types like
state machines, timing diagrams and sequence diagrams, that
have been in use in engineering sciences long before. However,
with UML the notation is now standardized and therefore more
accessible for someone who worked with UML before.

II. TINYOS AND NESC COMPONENTS

TinyOS programs (applications in TinyOS nomenclature)
are written in a C programming language dialect called NesC
[2]. While programming languages that are usually used for
embedded system programming allow dynamic allocation of
memory and dynamic binding of functions, NesC does not [3].
E.g., dynamic call resolution is too complex for general use in
very constrained embedded systems. Therefore, NesC supports
static binding only, however with a component model to allow
for quick exchange of different implementations for certain
functionality. The TinyOS component model is based on inter-
faces, which express the intersection of functions between
components. A component can either offer or use an interface.

By repeated application of this mechanism, hierarchal struc-
tures are obtained. The modules implementing or using an
interface are wired by a special component, the configuration,
which selects which user is connected to which provider.

III. COMPONENT DIAGRAMS FOR TINYOS

A. Overview of currently used representations

Publications describing TinyOS designs usually refer to the
component architecture of NesC. For better comprehensibility,
the designs given are mostly backed by graphically representa-
tions. Examples are shown in Figure 1 to Figure 3.

In each of these figures, it can be seen, that the hierarchical
provider and user structure is shown, as well as the interface
between user and provider. However, the graphical representa-
tion is different for each figure.

Figure 1. Component diagram as used by Culler [4]

Figure 2. Component diagram as used by [5]

This work was funded by the 7th Framework Programme of the European

Commission.

87

Figure 3. Component diagram as generated by the Eclipse plugins YETI [6]

(and similarly YETI 2 [7])

B. Use of UML 2

The structure of a system, i.e. of an application, can be de-
scribed by components, which represent reusable software
units. According to [8], components enclose – among others –
the following properties:

 a component comprises the specification of all realized
and required interfaces

 a component can be exchanged by another which imple-
ments the same specification

 internals of a component are hidden, i.e. functionality of
components is to be accessed via the offered interfaces on-
ly.

These three main properties are fulfilled for TinyOS com-
ponents.

Components can have black-box representations, i.e. their
internal implementation is not of interest, or white-box repre-
sentations, where the realization is given, e.g. by means of
nested components or class diagrams [9]. For the proposed
TinyOS modeling, the less abstract white-box notation is pro-
posed. The components offer interfaces and ports. Components
can be exchanged by other similar components, resulting in a
functionally equivalent application.

Component diagrams had been part of UML since the 1.0
version. The graphical representation changed slightly with
UML 2.0 with regard to the component block layout (now a
simple rectangle with a small rectangle with two bars as stereo-
type icon in the upper right corner) and the port element. Basic
building blocks of a component diagram are the rectangle,
representing a component (cf. Figure 4 a), the complete circle
(ball or lollipop, naming from [10]) for a provided interface
(cf. Figure 4 b) and the half-circle (socket) for a required
("used" in NesC-nomenclature) interface (cf. Figure 4 c).

Note that not all interfaces a component provides have to be
used; however, for all required interfaces a provider is neces-
sary.

Figure 4. Building blocks of a component diagram:

a) component with name "Name" b) provided interface with interface name

"IFname" c) required interface with interface name "IFname"

As an example, the Service Instance design pattern from [4]
is given in Figure 5 in UML representation. For comparison,
see original representation in Figure 1.

Figure 5: Service Instance pattern [4] in UML notation

The stereotypes "specification" and "realization" can be
used to represent TinyOS configuration components and mod-
ule components respectively. In Figure 6 these stereotypes are
used to model the BlinkC component, as given in proprietary
notation in Figure 2.

Figure 6. Component diagram in UML notation, showing use of "specifica-

tion" and "realization" stereotypes

In Figure 7 the component of Figure 3 is depicted in the
proposed notation, likewise giving an example of the UML
port element. Ports assort interfaces that offer functionality
together. In the suggested notation, ports offer public interfac-
es, which can be used by other components. Therefore, ports –

<<specification>>

BlinkC

<<realization>>

BlinkM

StdControl

<<specification>>

SingleTimer
<<specification>>

LedC

<<specification>>

Main

StdControl

Timer Leds

a) b) c)
<<component>>

Name
IFnameIFname

ResourceC

Resource

ServiceProvider

Service

Service

Service

User1

User2

components User2, ServerProvider;

User2.Service -> ServiceProvider.Service[unique("Service")];

NUSERS = uniqueCount("Service");

StateType state[NUSERS];

88

together with the delegate stereotype – lead interfaces through
from the realizing component to the specifying component.

Figure 7. Component diagram in UML notation, depicting use of ports

C. Applicability in larger systems

Specifications of larger systems by use of this UML nota-
tion are possible, though they can become unclear if the dia-
grams are monolithic. One remedy is to model only one speci-
fication component with its realizing components in one dia-
gram, as done in Figure 5 – 7. Between the single component
view and the monolithic system view, any intermediate stage of
diagram depth can be chosen, as appropriate to show the essen-
tials of the system. Additionally, the "subsystem" stereotype
can be used to model only specific parts of the whole system
[11]. Using these techniques, the author was successful in spe-
cifying and documenting larger TinyOS applications.

In an automatic graphical tool, like in the YETI/YETI 2
tools, each specification component could be expanded and
collapsed, thus revealing relevant and disclosing irrelevant
parts of the diagram.

IV. CONCLUSION

The popularity of UML in computer science makes it the
standard notation for documenting software architectures. The

use of component diagrams is feasible and advisable to provide
for a comprehensive insight to software designs, enabling effi-
cient communication among developers and management.

The TinyOS community is invited to apply more UML and
in general more design principles of the traditional PC-
computer science to embedded systems. Standardization will
simplify the software development for TinyOS, making design
ideas more evident and finally resulting in a more economic
and reusable software.

ACKNOWLEDGMENT

The author likes to thank Dr. Markus Krüger, Prof. Chris-
tian Große and the team of department "Non-destructive Test-
ing and Monitoring Techniques" for their support.

REFERENCES

[1] OMG Unified Modeling Language, Superstructure, V 2.1.2. Object
Management Group Inc., 2007. Available:

http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF

[2] (no author given). http://nescc.sourceforge.net/, date of access: 2007-10-
15

[3] P. Levis. (2006). TinyOS Programming. http://csl.stanford.edu/~pal, date
of access: 2007-12-17

[4] D. Gay, P. Levis, D. Culler. (2005, July). Software design patterns for
TinyOS. In Proceedings of the 2005 ACM SIGPLAN/SIGBED
Conference on Languages, Compilers, and Tools for Embedded Systems.
SESSION: System design issues table of contents. pp. 40-49

[5] A. Lachenmann. (2007). Einführung in TinyOS und nesC (in German).
http://www.ipvs.uni-stuttgart.de/abteilungen/vs/lehre/lehrveranstaltunge
n/uebungen/SS07/UESN_termine/start, date of access: 2007-10-15

[6] R. Schuler, N. Burri. (2006). TinyOS Plugin for Eclipse,
http://dcg.ethz.ch/~rschuler/OLD/index.htm, date of access: 2007-10-09

[7] Benjamin Sigg. (2008). TinyOS 2 Plugin for Eclipse, http://tos-
ide.ethz.ch/wiki/index.php, date of access: 2008-10-09

[8] M. Born, E. Holz, O. Kath. (2004). Sotwareentwicklung mit UML 2 (in
German). Addison-Wesley

[9] P. Forbrig. (2007). Objektorientierte Softwareentwicklung mit UML (in
German). 3rd ed., München: Carl Hanser

[10] S. W. Ambler. (2004). The Object Primer: Agile Model-Driven
Development with UML 2.0, 3rd ed., Cambridge University Press

[11] D. Pilone, N. Pitman. (2005) UML 2.0 in a Nutshell. O'Reilly

[12] B. Oestereich (2005). Analyse und Design mit UML 2 (in German). 7th
ed., München: Oldenbourg

[13] http://www.tinyos.net/tinyos-2.x/doc/html/tutorial/lesson1.html, date of
access: 2007-10-15

<<specification>>

ReadWriteSMB380C

<<realization>>

ReadWriteSMB380M

StdControl

<<specification>>

TimerC
<<specification>>

LedC

<<realization>>

Main

StdControl

Timer Leds

<<specification>>

I2CPacketC

StdControl MSP430I2CPacket

Operation StdControl

Operation StdControl

<<delegate>>

<<delegate>>

89

