
Modeling Security Aspects of Network Aggregation
Protocols

Frank Werner
Institut für Theoretische Informatik

Universität Karlsruhe (TH)
frank.werner@kit.edu

Raoul Steffen
Institut für Theoretische Informatik

Universität Karlsruhe (TH)
steffen@ira.uka.de

Abstract—We verify the correctness of a protocol for secure
data aggregation using formal methods. For this purpose, a
scenario is modeled and analyzed in which malicious nodes are
randomly placed by an adversary among protocol compliant de-
vices. We specify properties using linear temporal logic (LTL) and
in combination with an implemented design, an exhaustive state
space analysis is conducted using model checking techniques.
We conclude this work with statements and assertions about the
correctness of the investigated protocol and determine uncritical
cases under which nodes forge packets but remain undetected.

I. INTRODUCTION

The design of secure and safety critical protocols is even
in the miniaturized world of embedded devices that run with
less than 512kB of memory a challenge to engineers. It is
complicated not only due to the complexity of the underlying
algorithms but mainly because of the concurrent nature of
such a distributed system. Simultaneous access to a common
resource (like the communication medium) or the concurrent
execution of tasks hamper not only implementation and design,
but also the proof for correctness.

Formal methods have evolved over time to strong algorithms
that can handle the complexity of those systems, and in
contrary to testing and simulation, design flaws are found if
they exist by an exhaustive state space analysis. One prominent
tool that fulfills this claim is Spin, a model checker, that
offers mechanisms for non-determinism and concurrent system
modeling. The tool has demonstrated its suitability in various
industrial case studies (e.g., [1], [10]) to be powerful enough
in providing a sound basis for formal verification approach.

In this work we verify a protocol for authentic data ag-
gregation by means of the Spin model checker [8] which
has proven to be efficient enough to handle model instances
with more than a million states and transitions. The formal
modeling approach aims to complement the arguments found
in the work of [5], provide new insights and possibly find
potential yet undiscovered design issues in the protocol.

This paper is structured as follows. In Section II we briefly
sketch the ESAWN [4] protocol with its main aspects and
functionality. Section III describes the general assumptions
like the adversary model. The Promela model including the
modeling modalities and the properties of interest are defined
and discussed in Section IV. There after in Section V the
results are shown and finally Section VI wraps up this work
and provides an outlook about future work.

leaf n1 n2 n3 root
A

A

A

aggn1

aggn1

aggn1

aggn2

aggn2

aggn3

Fig. 1. ESAWN scenario of an aggregation sequence with 2 witnessing
nodes (W = 2) i.e., that each aggregated is forwarded not only to the direct
neighbor, but also to additionally two nodes which attest the correctness of
the computed aggregates. For example node n1 sends aggn1 to node n2, and
in addition to n3 and root as witnesses.

II. THE ESAWN PROTOCOL

The investigated ESAWN protocol [4] (Extended secure
aggregation for Wireless sensor Networks) handles the trans-
port and aggregation of messages with guaranteed end-to-end
authenticity in the presence of multiple compromised nodes.

This is mainly achieved by the use of witnesses like shown
in the example of Figure 1: node leaf sends value A to
node n1. Since node n1 could be compromised witnessing
nodes are involved which also receive the value A. In the
above mentioned figure, two witnesses (W = 2) are used
which attest the proper behavior of node n1, namely node n2

and n3. Each witness compares the received aggregates with
previously received aggregates, and in case that they equal,
no faked aggregate was sent in between. On the other hand
if the aggregates differ, there is at least one compromised
node cheating which is made public by broadcasting an alarm
message to all nodes. In the next step, a new aggregate is com-
puted consisting of the node’s own aggregate and the received
ones. In the example of node n2 the aggregation function
fn2(aggn1 , A) computes the new aggregate aggn2 which then
encrypted and sent to parent nodes on the aggregation tree. By
using a symmetric encryption (e.g., SKEY [2]) the authenticity
of messages between nodes is achieved, since the protocol
requires the authenticity of aggregates to be verifiable all the
way down to the sink.

Each single data aggregate is sent and received multiple
times (exactly W +1). Therefore it is obvious, that the protocol
is causing a communication overhead and is very expensive
in terms of energy. Due to this reason, the user has means to

83



relax the authenticity of the data that arrives at the root (base
station), thus saving energy, but weakening the authenticity
of the data. This is done using parameter p which gives the
probability that a node verifies the correctness of an aggregate.
In consequence with probability 1−p the packets’ authenticity
is not checked. The resulting trade-off behind ESAWN [4] is,
the more authentic the user wants data to be sent over the
network links, the more energy is needed to accomplish this.

III. NETWORK AND INTRUDER ASSUMPTIONS

For the design of the ESAWN Model the following aspects
are taken into account. We are interested in the security of the
protocol and do not consider a relaxation of the authenticity.
For this reason we set probability p = 1 meaning that all
aggregates are checked. Note that in particular when setting
p < 1 a fake aggregate will stay undetected with probability
1− p and authenticity can no longer be guaranteed.

In addition, the scenario is chosen where nodes are lined up
(see Fig. 1). In this case the ESAWN Protocol is not working
most efficiently due to the missing aggregation of packets
which result in fewer transmissions. On the other side the same
properties hold here as in a tree-like scenario. Hence a tree-
like spanning topology is not required to proof the protocol’s
correctness.

The use of aggregation is an essential part in ESAWN
but does not need explicit modeling. Especially since we
refrain from sending real measured data values it is sufficient
to abstract from a concrete value by a data packet with
what-so-ever content which dramatically reduces the model’s
complexity.

A. Adversary Model

The attacker can compromise some nodes (up to k) in
the network by reading the nodes’ memory, obtaining their
secret keys, reprogramming and placing them undetected back
to the network. It can randomly select the nodes although
the highest potential security threat is in the case where
compromised nodes are located closely together. Hereby they
build a region of compromised nodes, cooperate among each
other and amplify their impact on other legitimate nodes.

The root node is assumed to be out of the adversary’s reach,
operating honestly for the following reasons. If the sink would
act malicious, there would be no meaningful verification of the
authenticity possible since the user could not trust the base
station. In addition if the attacker would have control over the
root node, it has all means to take over control of the whole
network sending its own requests which will not be denoted
by the user.

The same holds for the leaf nodes. Here it can never be
checked whether the extrinsically measured data is correct. As
such, an adversary may forge a sensor’s temperature sensor by
simply using a lighter at the hardware, and the base station
would not notice this counterfeit values.

IV. PROMELA MODEL

Promela (Process Meta-Language) [8] is the process de-
scription language for Spin with special emphasis on modeling
process, synchronization and coordination. We model the real
world ESAWN Protocol and define a variable number of N
nodes to be present in our scenario. Out of this, there are up
to k malicious nodes that forge packets from time to time but
mostly operate normal and inconspicuous. We define variable
W as the number of witnesses present, i.e., a node has to
sent each packet to at least W witnesses which verify the
correctness of its aggregates.

Four types of nodes form a network scenario namely the
leaf in charge of initially sending the collected sensor data
to the network which will always behave protocol conform.
Among the inner nodes we distinct between InnerNotCorrupt
nodes behaving honest and non-compromised, and InnerCor-
rupt nodes, trying to fake aggregates from time to time. The
root node eventually received the aggregates and cannot be
compromised by the adversary. The detailed behavior of the
Spin process for the different type of nodes is depicted in
Figure 2.

A. Modeling Channels

Before the actual Promela model of the ESAWN protocol
is run, each node initializes the required message channels
on the aggregation path. This means that each node obtains
input channels from children nodes and is allocated outgoing
channels to its succeeding parent nodes. The use of a separate
channel for each node is legitimate and can be motivated by
the fact that in the ESAWN protocol implementation nodes
share pairwise symmetric keys (SKEY - Secure KEYing [11],
[3]). In the Promela model we check these requirements by
the use of channel assertions xs and xr on which nodes or
processes – in terms of the Spin model – have exclusive access.
The globally defined channels of type chans, defined as an
1-byte variable that can contain one data packet at a time.

B. State Variables

The global variables represent the overall state of the
model and specify the LTL proof obligations. CheatDetect
represents a detected faked aggregate. Note that only
InnerNotCorrupt and root nodes detect a fake message
since the intruder has no incentive to expose himself. This is
modeling is compliant to the protocol which specifies an alarm
message sent to all known surrounding nodes in case a fake
aggregate is discovered.

The root process announces a received aggregate
(AnnounceRcv). It then checks whether the received ag-
gregate is correct in which case RcvDataCorrect is set.
The variable FakeNodes is incremented whenever a com-
promised node turns active and each time a forget aggregate
is sent counter FakePacketsSnd is incremented.

C. Process Models

Initially all four node types (Leaf, InnerCorrupt,
InnerNotCorrupt, Root) initialize their channels. In

84



Fig. 2. Action diagram for the ESAWN protocol that is run in each Spin
process independently.

more detail they set up channels with their designated pre-
decessor and successor nodes.

1) Leaf Process: As in the scenario in Figure 1 the leaf
generates a sample and initiates a protocol run by sending
this sample its parent node and witnesses. The data packet is
represented by value "0", representing the original value sent
by the leaf node. After a successful sent the leaf process stops.

2) InnerNotCorrupt Node: A protocol compliant node
waits until W children sent their packets and then compares
the received data for equality. In case cheating is detected
(aggStore[i]!= aggStore[i − 1]) for one aggregate,
variable CheatDetect is set to true and the node pro-
cessing stops. In case that all aggregates equal, they are sent
to all W parent nodes for witnessing.

3) InnerCorrupt Node: A malicious node behaves different
from loyal ones. After the channel is initialized, they wait until
all aggregates from child nodes are received. Where a non-
malicious node verifies the aggregates, a corrupt node won’t
do so in order not to reveal an attack started by other corrupt
nodes. In addition, a compromised node can suddenly turn

active and send a forged aggregate to only a parent node, or
at most W nodes.

4) Root Process: The root node waits for data to arrive.
If aggregates arrive they are pairwise checked for equality
and in case that this check fails, this is reported by setting
variable CheatDetect. In case the results are all vali-
dated and all packets are checked for correctness, variable
RcvDataCorrect is set to true. In addition variable
AnnounceRcv is set and the process terminates.

D. Properties of Interest

In this section the model from above is feed into the model
checker Spin. In the tool setting we set memory use for
building the state space to 512MB. As parameters an estimated
state space size of 500 · 103 and a maximum search depth of
10 000 steps is used. The LTL properties are defined as:

P1: ♦(AnnounceRcv ∨ CheatDetect)
It is eventually the case that either the root announces
received data (AnnounceRcv) or one or more nodes
are cheating which is detected by at least one honest
node (cheating detected CheatDetect). The use of
"one node" is sufficient since it will trigger the alarm.

P2: �AnnounceRcv → (RcvDataCorrect ∨
CheatDetect)
Whenever the root node receives a data packet
(AnnounceRcv), it is either identical with the one
sent by the leaf node and no faked aggregates are
sent (received data correct RcvDataCorrect) or at
least one node detected a corruption (CheatDetect)

P3: �(FakePacketsSnd > 0→ ♦CheatDetect)
Whenever there is a forged packet send
(FakePacketsSnd > 0) this will eventually
be detected and reported (CheatDetect)

P4: �(RcvDataCorrect→!(FakeNodes > 0))
Whenever the data received by the root node is
correct (RcvDataCorrect), there has been no faked
message although forging nodes (FakeNodes > 0)
might be present

V. RESULTS

The results are displayed for parameters k = 2, N =
5, W = 3 in the message sequence charts in Figure 3,
which reflect only one possible trace of execution. The MSCs
represent the behavior of the processes over time until termi-
nation. All global happenings like corrupted node detected or
betrayed packet are displayed by dashed horizontal lines.

In the MSC of Figure 3(a) two compromised nodes (n2, n3)
are present as denoted by the "*". The verification results
are shown in Table I. Properties 1 and 2 are valid which
state that no packets are lost. Consequentially, either cheating
is detected, or a sound aggregate arrives at the root node.
In contrary, properties 3 and 4 do not hold, proving that

85



Leaf Node1 Node2* Node3* Root

data

data

data

stop

data

data

data

stopped

fake

data

stopped

fake

Corruption detected

stopped

stopped

(a) Correct run where cheating is detected

Leaf Node1 Node2* Node3* Root

data

data

data

stop

data

data

data

stopped

fake

BetrayedPackets 1

data

stopped

data

stopped

ReceivedDataCorrect 1

AnnoucedReceived 1

stopped

(b) Run where property 3 and 4 fail

Fig. 3. Message Sequence Charts (MSC) for two scenarios, where compro-
mised nodes are indicated by the small asterisk.

property result
♦(AnnounceRcv ∨ CheatDetect) valid
�AnnounceRcv → (RcvDataCorrect ∨ CheatDetect) valid
�(FakePacketsSnd > 0 → ♦CheatDetect) not valid
�(RcvDataCorrect →!(FakeNodes > 0)) not valid

TABLE I
RESULTS WITH PARAMETERS n = 5, k = 2, w = 3

compromised nodes cooperate. In the MSC each of the com-
promised nodes is sending a faked packet to its direct child
node as in Figure 3(b). Since we assume that the adversary
wants to remain undetected, n3 will not trigger an alarm since
corrupt nodes cooperate. And thus the root receives two valid
aggregates although a forged aggregate was sent. This does
not necessary mean, that we discovered a flaw in the ESAWN
protocol but rather that a scenario is possible where the data
was received correctly, in the presence of a forged aggregate.

VI. CONCLUSION

The here presented analysis using the Spin tool verifies
the authenticity and safety of the ESAWN protocol. In turn
the failed property doesn’t open space for intrusion attacks,
since the adversary gained nothing in this case. Since we
have not looked into the source code, we cannot guarantee the
protocol’s correctness after deploying it to a real world sensor
network. Hence some uncertainties about the reliability of the
hardware, the operation system of the sensor node, or the com-
piler still remain. Hence, using a more realistic model without
the chosen level of abstraction and human interference would
be desirable to have that could be extracted from the source
code by tools like SLEDE [7] or Modex/Feaver[9]. SLEDE
translates TinyOS protocols into Promela code automatically.
Unfortunately only an old format of the TinyOS framework is
supported by SLEDE up today.

Another way to continue this work is the generation of
a behavior model using the TinyOS build-in NULL platform
and afterwards use software verification tools like CBMC [6].
Although this approach would be restricted to sequential prop-
erties that describe the behavior of a single node, algorithmic
aspects and errors introduced during the generation could be
discovered before deployment.

REFERENCES

[1] Kusy B. and Abdelwahed S. FTSP Protocol Verification using SPIN.
Technical Report ISIS-06-704, ISIS technical report, May 2006.

[2] Erik-Oliver Blaß, Michael Conrad, and Martina Zitterbart. A Tree-Based
Approach for Secure Key Distribution in Wireless Sensor Networks.
In REALWSN – Workshop on Real-World Wireless Sensor Networks,
Stockholm, Sweden, June 2005.

[3] Erik-Oliver Blaß, Michael Conrad, and Martina Zitterbart. A Tree-Based
Approach for Secure Key Distribution in Wireless Sensor Networks.
In REALWSN – Workshop on Real-World Wireless Sensor Networks,
Stockholm, Sweden, June 2005.

[4] Erik-Oliver Blaß, Joachim Wilke, and Martina Zitterbart. A Security–
Energy Trade-Off for Authentic Aggregation in Sensor Networks. pages
135–137, Washington D.C., USA, September 2006. IEEE Conference on
Sensor, Mesh and Ad Hoc Communications and Networks (SECON),
Extended Abstract. ISBN: 1-4244-0732-X.

[5] Erik-Oliver Blaß, Joachim Wilke, and Martina Zitterbart. Relaxed Au-
thenticity for Data Aggregation in Wireless Sensor Networks. Istanbul,
Turkey, September 2008. 4th International Conference on Security and
Privacy in Communication Networks (SecureComm 2008). to appear.

[6] Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. A Tool for
Checking ANSI-C Programs. In Kurt Jensen and Andreas Podelski,
editors, 10th Intl. Conf. on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), volume 2988 of Lecture Notes in
Computer Science, pages 168–176. Springer, 2004.

[7] Youssef Hanna. Slede: lightweight verification of sensor network
security protocol implementations. In ESEC-FSE companion ’07: The
6th Joint Meeting on European software engineering conference and the
ACM SIGSOFT symposium on the foundations of software engineering,
pages 591–594, New York, NY, USA, 2007. ACM.

[8] Gerard J. Holzmann. The Spin Model Checker – Primer and Reference
Manual. Addison-Wesley, September 2003.

[9] Gerard J. Holzmann and Margaret H. Smith. Automating software
feature verification. Technical report, Bell Laboratories, 2000.

[10] Tanaka Shin Ya, Sato Fumiaki, and Mizuno Tadanori. Multimedia
network system. security protocol verification system based on spin.
Transactions of Information Processing Society of Japan, 42(2):147–
154, 2001.

[11] Martina Zitterbart and Erik-Oliver Blaß. An Efficient Key Establishment
Scheme for Secure Aggregating Sensor Networks. In ACM Symposium
on Information, Computer and Communications Security, pages 303–
310, Taipei, Taiwan, March 2006. ISBN 1-59593-272-0.

86


