

Reliable Model Checking for WSNs

8. GI/ITG KuVS Fachgespräch Drahtlose Sensornetze 13. – 14. August 2009

- Introduction
- Particularities of WSNs with regard to verification
- Implementing a Traffic Light Synchronization
 Protocol
- Communication characteristics and verification of WSNs
- Conclusion and Outlook

15 Ges 2

Introduction

8. GI/ITG KuVS Fachgespräch Drahtlose Sensornetze 13. – 14. August 2009

- Verification techniques:
 - Simulation:
 - stimulation of a system with input patterns
 - check if the system behaves as desired
 - no exhaustive analysis of system behavior
 - complex errors often cannot be detected
 - Formal Verification:
 - examination of all possible system behaviors
 - allows reliable detection of complex errors

- Formal Verification techniques:
 - Theorem Proving
 - Model Checking
- Model Checking:
 - fully-automated through tools called Model Checkers

 given a finite-state model of a system and a formal property, exhaustive investigation whether property holds for that model

counterexample generation if a property is violated

• Model Checking Process:

8. GI/ITG KuVS Fachgespräch Drahtlose Sensornetze 13. – 14. August 2009

Particularities of WSNs with regard to verification

8. GI/ITG KuVS Fachgespräch Drahtlose Sensornetze 13. – 14. August 2009

- Verification of WSNs is a highly non-trivial task
 - a single sensor node (hardware+software) can be very complex
 - WSNs can consist of a large number of sensor nodes and verification of distributed systems is hard
- Additionally communication is wireless
 - wireless communication has some particularities, e.g. occurrence of
 - transmission errors and collisions
 - radio wave propagation variations

Implementing a traffic light synchronization protocol

8. GI/ITG KuVS Fachgespräch Drahtlose Sensornetze 13. – 14. August 2009

Case Study: Verification of a traffic light synchronization protocol at 4-way road intersections with the Model Checker NuSMV

 $W \rightarrow 0$

road intersection with traffic lights

Important safety-critical property:

 → only diagonally arranged traffic
 lights can show green or yellow at the same
 time

Other desirable properties:

→ no deadlock

 \rightarrow fair allocation of green phases

Communication characteristics and verification of WSNs

8. GI/ITG KuVS Fachgespräch Drahtlose Sensornetze 13. – 14. August 2009

Communication characteristics and verification of WSNs

• Extract of the verification model for the traffic light at north:

<pre>init(cState) := red; next(cState) := case</pre>	
	state = red & sendReqSouth & !collision : recAck1; state = red & (sendReqEast sendReqWest) & !collision : prepAck; state = red & chanFree & changeAllowed=yes & boolInput : sendReq;
	state = sendReq : recAck1;
	state = recAck1 & sendAckEast & !collision : ackEast; state = recAck1 & sendAckWest & !collision : ackWest; state = recAck1 & (sendReqEast sendReqWest) & !collision : prepAck;
ackPartner;	state = ackEast & sendAckWest & !collision & !(changeAllowed=partner) :
ackPartner;	state = ackWest & sendAckEast & !collision & !(changeAllowed=partner) :
	state = ackPartner & sendAckSouth &!collision : yellow;
	state = prepAck & boolInput & chanFree : sendAck;
	state = sendAck & changeAllowed=partner : yellow; state = sendAck & !(changeAllowed=partner) : red;
	<pre>state = yellow & direction=down : green;</pre>

8. GI/ITG Kests Fachgespräch Drahtlose Sensornetze 13. – 14. August 2009

UNIVERSITÄT

WÜRZBURG

Communication characteristics and verification of WSNs

Non-observance of variations of radio wave propagation

change=partner

UNIVERSITÄT

WÜRZBURG

8. GI/ITG KuVS Fachgespräch Drahtlose Sensornetze 13. – 14. August 2009

- Non-observance of variations of radio wave propagation can circumvent the detection of safety-critical errors
- For reliable verification of WSNs it's necessary to include them in the verification model
- Because of the state space explosion problem abstract models which contain at least all relevant behaviors are necessary
- In our work we have developed some suitable abstractions, e.g. for
 - variations of radio wave propagation
 - a MAC protocol with carrier sense and a randomized backoff procedure

Conclusion and Outlook

8. GI/ITG KuVS Fachgespräch Drahtlose Sensornetze 13. – 14. August 2009

- Often system components of WSNs cannot be verified isolated
- A model of the communication characteristics can be necessary for reliable verification
- Even models of other system components, like e.g. timers or parts of operating systems, could be necessary
- Especially for non-verification experts, suitable and faultless abstractions should be available
- Future work:
 - Development of suitable abstractions for several other WSN components
 - Improvement and examination of verifiability of dynamic topologies

15 Ges 2

Questions?

8. GI/ITG KuVS Fachgespräch Drahtlose Sensornetze 13. – 14. August 2009

