
Reliable Model Checking for WSNs
Christian Appold

Chair of Computer Science V
University of Würzburg

Am Hubland, 97074 Würzburg
Email: appold@informatik.uni-wuerzburg.de

Abstract—The capabilities of wireless sensor networks are
promising a great future for them. Nevertheless it’s necessary to
have methods to verify their correct operation before deployment,
for widening their range of application and enable their usage
in e.g. safety critical environments. One method to examineif
systems behave as desired is temporal logic model checking [1],
which is a formal verification technique. When verifying wireless
sensor networks, some special aspects like the correct modeling
of the wireless communication and possibly other components
of the sensor nodes are essential. In this paper we report about
the verification of a traffic light synchronization protocol at 4-
way intersections, where the traffic lights communicate wireless.
We present some needful abstraction techniques and discuss
particularities in the verification of wireless sensor networks.

I. I NTRODUCTION

In this paper we report about the verification of a traffic
light synchronization protocol at 4-way intersections andthe
verification of wireless sensor networks (WSNs) in general.
WSNs can consist of a large number of sensor nodes. Be-
cause verification of distributed systems is hard, and even a
single sensor node and its software could be very complex,
verification of sensor networks is a highly non-trivial task.
But if they should become deployable in e.g. safety critical
environments or areas where they can’t be reprogrammed,
it’s unavoidable to verify that they fulfill their requirements.
Otherwise implementation failures can be very costly and
cause accidents, which in the worst case could lead to the death
of humans. Common approaches to verify the functionality
of WSNs are e.g. the use of simulators like TOSSIM [2]
or live testing by using testbeds. As a drawback of these
methods, they don’t verify the desired properties for all
possible computations of the sensor network. It is known that
especially hard bugs in distributed systems often appear only
in a few corner cases. Therefore such complex bugs cannot
be detected reliably by these methods. An approach for early
stage sensor network verification is the use of model checking.
Because model checking isn’t easy to apply correctly without
some verification experience, it currently isn’t widely used in
the area of WSNs. Hence we outline in our paper guidelines
and abstractions for improving the verifiability of WSNs. This
should help to achieve fast and correct verification and make
formal verification amenable for the WSN domain.

The paper is organized as follows. In Section II we discuss
related work on the field of verification. Section III gives
a short introduction in model checking and the symbolic
model checker NuSMV [3], which we used for our verification

experiments. The verified traffic light synchronization protocol
is described in Section IV and Section V shows pitfalls when
modeling wireless communication. In Section VI we present
useful techniques to model the protocol in the input language
of NuSMV. The paper closes with concluding remarks and an
outlook to further investigations.

II. RELATED WORK

WSNs often contain stochastic elements (e.g. backoff proce-
dures of communication protocols or elements of the environ-
ment). To allow reliable verification of them, these have to be
modeled as accurate as possible. PRISM [4] is a probabilistic
model checker for analyzing quantitative properties of systems
which exhibit stochastic behavior. But though the possibility
to model probabilistic elements accurately, its input language
is very restricted and probabilistic models are typically more
complex, which decreases the limit what can be analyzed.
Therefore we have chosen for our work the symbolic model
checker NuSMV, which doesn’t directly support the specifica-
tion of probabilistic elements.

In [5] the authors verified the IEEE 802.3 Ethernet
CSMA/CD protocol using the symbolic model checker SMV
[6]. This protocol is a wired protocol, so they hadn’t to deal
with the special characteristics of wireless communication.
Fehnker et. al [7] verified the LMAC protocol, a medium
access control protocol for WSNs using Uppaal [8], a model
checker for timed automata. Their property of main interest
was detecting and resolving collisions, which they verified
for different topologies. They showed that the truth of prop-
erties may depend on the network topology. The focus of
both papers mentioned above was to verify a communication
protocol, whereas our work aims towards verifying networks
of sensor nodes considering not only communication, but also
implemented functionality. We show that it’s often necessary
to model communication or possibly other important system
components to verify functionality.

III. M ODEL CHECKING AND NUSMV

Model checking is an automatic formal verification tech-
nique for verifying properties of finite state systems. A model
checker is a tool which, given as input a model of a system
and a property of interest formulated in a temporal logic,
automatically decides whether the property is valid for all
possible computations of the model. To decide if a property
is valid, the model checker has to explore all possible system

79



Fig. 1. 4-way road intersection with traffic lights

states exhaustively. As a consequence, the main problem of
model checking is the state explosion problem. This problem
especially appears in the verification of distributed systems,
where the number of possible system states grows exponen-
tially in the number of components. One method to reduce the
state explosion problem is to use symbolic model checking
[9], which uses BDDs for representing sets of states and the
transition relation symbolically, instead of representing them
explicitly.

Because symbolic model checking allows the handling of
systems with very large state spaces, we used the symbolic
model checker NuSMV [3] for our work. NuSMV is a reim-
plementation and extension of the symbolic model checker
SMV. NuSMV permits the description of synchronous and
asynchronous systems and has its own input language. For
property formulation, NuSMV supports the temporal logics
LTL and CTL [1], which extend propositional logic with
temporal operators.

IV. T HE TRAFFIC L IGHT SYNCHRONIZATION PROTOCOL

To show particularities of WSN verification and the useful-
ness of our abstractions, we developed a simple traffic light
synchronization protocol for 4-way intersections. Figure1
shows a 4-way road intersection with one traffic light for each
incoming road. The purpose of the protocol is to synchronize
traffic lights which communicate wireless. Thereby one of the
main targets is to ensure that only diagonally arranged traffic
lights are allowed to show green at the same time, to prevent
accidents. A simplified state diagram of the control flow of
the protocol for a single traffic light can be seen in Figure
2. The conditions for the feasibility of transitions and also
transitions without state changes have been omitted for clarity.
These conditions consist of combinations of values of local
state variables and types of incoming messages from other
traffic lights.

In the control statesred (initial state), yellow and green,
the protocol triggers its lights to get the corresponding color.
If a traffic light is in the statered or green and gets a
message to change its light color (e.g. from a traffic mea-
surement sensor at the road), the protocol sends a command
to transmit a light change request to the underlying MAC
protocol. When the MAC protocol confirms the sending of the
message, the transmitting traffic light changes its controlstate
to an acknowledgement receiving state. If no communication
errors occured, the diagonally arranged traffic light at the

Fig. 2. Control flow state diagram of the traffic light synchronization protocol
for a single traffic light

Fig. 3. Control staterecAck1with transitions

intersection subsequently changes its control state also to an
acknowledgement receive state. There are four such states in
the protocol, but for clarity they are summarized in Figure 2
into one state. The other two traffic lights change their state to
prepareAck, if their lights are red at the moment. When their
lights show green, they first change their light color to red and
then go to this state. In the stateprepareAckthey prepare and
send an acknowledgement transmit request to the MAC layer.
They leave this state, when they get the confirmation that the
request has been sent.

Figure 3 shows exemplary transitions and next states of
the receiving staterecAck1. A traffic light changes to this
control state from the statesred and green, when it receives
the confirmation that a light change request has been sent
from the MAC layer. The Figure is drawn with identifiers for
the traffic lights at the incoming roads from north and south,
whose behavior is symmetric in this state. If the traffic light
receives an acknowledgement from the traffic light at east or
west and there hadn’t been a communication error, it changes
its state torecAckEast, and recAckWestrespectively. Because
it could be possible, that two light change requests from traffic
lights collide, or a traffic light hasn’t received a send request
from another traffic light, this had to be considered in the
protocol. Therefore the protocol uses a timeout counter, which
is incremented every step when the traffic light is in state
recAck1until the timeout limit is reached. Also the protocol
uses a variablechange, which has the valuepartner, when
the traffic light received a change request from the diagonally
arranged traffic light at the intersection.

By executing the transition with the variablestimeout-
Counter and changein Figure 3, a command to transmit a
traffic light change request is send to the MAC layer. The state
changes fromrecAck1 to yellow or prepareAckare needed,

80



Fig. 4. Receiving of acknowledgements inrecAck1without collisions

because a traffic light could be in the staterecAck1 while
a change request from another traffic light could have been
sent. This behavior could appear because of collisions or
transmission errors, when sending a light change request.
If the traffic light shows green, it first changes its state
to yellow and thenred, before going to stateprepareAck.
Otherwise it changes its state toprepareAckto initiate the
transmission of an acknowledgement. Two different types of
acknowledgements can be sent by a traffic light. One type
to acknowledge a request of the diagonally arranged traffic
light and another type to acknowledge traffic light change
requests from the other two traffic lights. After reception of
all necessary acknowledgements without timeout, the initiating
traffic light sends a sendComplete message to inform the other
traffic lights about successful light change and changes itslight
color accordingly.

V. COMMUNICATION MODELING PITFALLS

In this section we show how neglecting wireless communi-
cation characteristics can circumvent the detection of design
errors through model checking.

A. Nonobservance of collisions and impossibility to listen
during sending

Here we show how disregarding collisions together with
nonobservance of impossibility to listen during sending can
prohibit the detection of design errors. Figure 4 shows an
example model of the outgoing transitions of staterecAck1
where acknowledgements are received for the traffic light at
north, without considering collisions. In a real world deploy-
ment acknowledgements from the traffic lights at east and
west cannot arrive at the same time, because there would
be a collision in wireless communication. When verifying the
property that no deadlock exists for this model of the protocol,
it could be verified by the model checker as correct even
without using a timeout and request resend mechanism in the
acknowledgement receiving states. If the acknowledgements
from the traffic lights at east and west collide, without a
timeout and request resend mechanism all traffic lights are
stuck in their states. When ignoring that listening in wireless
communication usually isn’t possible during sending, the other
parts of the protocol could be implemented for the model
checker in a way, that these deadlock doesn’t appear on any
computation path of the model. As a consequence the model
checker can’t find the deadlock.

B. Nonobservance of variations in radio wave propagation

Variations in radio wave propagation, e.g. through changing
environmental conditions or obstacles, can cause situations

where a message sent by a traffic light could be received only
by a subset of the desired receivers. In an early version of the
protocol we used only one type of acknowledgements. During
verification runs considering collisions but without variations
of radio wave propagation, we couldn’t find a counterexample
for the property that only diagonally arranged traffic lights
are allowed to be green at the same time. When we inserted
variations of radio wave propagation in our verification model,
we could find computation paths where three traffic lights
could show green at the same time.

This behavior could appear, if all traffic lights showed
red and the south traffic light changed its control state from
recAck1to prepareAck, because of a light change request from
the west traffic light. The light at north didn’t receive this
request. Subsequently the light at north did send a light change
request and the south traffic light approved this by sending
an acknowledgement, whereas its state change toprepareAck
has been caused by a change request from the west traffic
light. As a consequence the south traffic light switched to
control state red and the north traffic light to state green. After
that the north traffic light changed its state tored and then
to prepareAck, because the traffic light at east transmitted a
light change request to green. Then the traffic light at south,
which didn’t receive this request, transmitted a light change
request which was received by north. In the old protocol the
traffic light from north was able to change its variablechange
(see Section IV and Figure 3) to the valuepartner in state
prepareAck. Therewith it could execute the transition from
stateprepareAckto stateyellow. Subsequently the west traffic
light send a request to change its lights color to green and
the north traffic light acknowledged this and also changed its
color to green.

VI. M ODELING SUGGESTIONS FOR RELIABLE

VERIFICATION

In this section we describe suggestions to model the char-
acteristics of wireless communication for the model checker
NuSMV. We present suitable abstractions for modeling varia-
tions in the radio range, transmission errors, the possibility of
packet collisions and the circumstance that collisions normally
cannot be detected by the sending nodes. Their use allows the
reliable verification of WSNs.

Verification models for NuSMV consist of several pro-
cesses, which can be executed completely synchronous or
completely asynchronous. For our verification runs we chose
synchronous execution, because of the lower complexity of
the verification model and the lower verification effort for
the model checker. To model the wireless communication
channel, we used DEFINE statements from the input language
of NuSMV. These work like macros. We therewith specified
for each traffic light defines for channel free, collision and
one for each message of any other traffic light. The value
of these defines is determined by the current control states
of the traffic lights and the values of input variables. For
this purpose we inserted the control statessendReq, sendAck,
sendAckPartnerand sendCompletein our verification model.

81



Fig. 5. Example DEFINE commands for channel modeling

Fig. 6. Control staterecAck1with transitions and abstractions

A traffic light in our model transmits, if its control state
currently equals one of these new states. Figure 5 shows
examples of DEFINE commands for channel free, collision
occured and some incoming messages for the traffic light
from north. A big advantage of this modeling, beneath its
correctness and easy implementation is, that no new state
variables are needed for it, because defines work like macros.
In contrast the channel model of [7] introduces new state
variables, which in large networks can affect the verifiability.
The domain of the defines we formulated is Boolean. For
free, the define holds the logical value true if no other traffic
light at the intersection currently sends a message which
north receives, otherwise false. To detect collisions, thedefine
collision takes the value true if two or three other traffic lights
send simultaneously messages which north receives. The last
two defines in Figure 5 indicate if the traffic light for the
incoming road from east sends a sendRequest or sendComplete
message, which north receives correctly. Their logical value
depends on the current control state of the traffic light at
east and the value of the Boolean input variableinputEast.
Input variables in NuSMV get their value from the verification
environment through the model checker, which assigns all
possible values to them in every state. They are used in
the definessendReqEastandsendCompleteEastfor modeling
variations in radio range and transmission errors.
Figure 6 shows the outgoing transitions and successor states
of state recAck1, as in Figure 3, with our modelings and
abstractions for wireless communication. To include collisions
in our model, we added the condition!collision to transitions
where messages have to be received for their feasibility. With
our experiments we intended to verify the protocol for wireless
communication and a MAC protocol with carrier sense and a
randomized backoff procedure. Thus, for reliable verification
we needed a suitable model for it, which preserves all possible
computations and keeps the state space small. We developed
an abstraction using Boolean input variables. Through adding
conditions about a certain value of an input variable, we
restricted the feasibility of transitions which lead to a state
which models the sending of a message. In the transition from
staterecAck1to sendReqin Figure 6 this is the input variable

backoff. Additionally we added the condition that the define
free of the communication channel model also has to be true
for feasibility of the transition. In the transitionfree is used to
model the carrier sense mechanism and the input variable is
responsible for modeling all possible behaviors of the backoff
procedure.

VII. C ONCLUSION AND OUTLOOK

In this paper we reported about verification of WSNs.
We developed a traffic light synchronization protocol for 4-
way intersections and showed some particularities in verifying
WSNs. One conclusion is, that often system components, like
e.g. synchronization protocols, cannot be verified isolated in
WSNs. Frequently, a model of the communication protocol
and models of other sensor node components, like e.g. timers
or even parts of operating systems, are also necessary. A big
challenge is to find suitable models which don’t affect the
verifiability (by leading to the state explosion problem) but
describe the intended behavior correctly. Therefore especially
for non-verification experts, suitable and faultless abstraction
techniques should be available. In this paper we presented
a way to model a communication channel with collisions,
transmission errors and variations of radio wave propagation
for the model checker NuSMV. Additionally we presented a
model of a backoff procedure.

For future work we want to develop abstractions for several
other sensor network components. Additionally we will exam-
ine the impact of different and dynamic topologies together
with varying radio ranges on verification results.

REFERENCES

[1] C. Baier and J.-P. Katoen,Principles of Model Checking,
Cambridge, Mass: The MIT Press, 2008.

[2] P. Levis, N. Lee, M. Welsh and D. Culler,TOSSIM: Accurate and
Scalable Simulation of Entire TinyOS Applications, In Proceedings of the
1st International Conference on Embedded Networked SensorSystems
(SenSys 2003).

[3] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani and A. Tacchella,NuSMV 2: An OpenSource
Tool for Symbolic Model Checking, In Proceedings of the 14th Interna-
tional Conference on Computer Aided Verification (CAV 2002). Springer,
2002.

[4] A. Hinton, M. Kwiatkowska, G. Norman and D. Parker,PRISM: A
Tool for Automatic Verification of Probabilistic Systems, In Proceedings
of the 12th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 2006). Springer, 2006.

[5] V. G. Naik and A. P. Sistla,Modeling and Verification of a Real Life
Protocol Using Symbolic Model Checking, In Proceedings of the 6th
International Conference on Computer Aided Verification (CAV 1994).
Springer, 1994.

[6] K. L. McMillan, Getting Started with SMV, User’s Manual, Cadence
Berkeley Laboratories, USA, 1998.

[7] A. Fehnker, L. van Hoesel and A. Mader,Modelling and Verification of
the LMAC Protocol for Wireless Sensor Networks, In Proceedings of the
6th International Conference on Integrated Formal Methods(IFM 2007).
Springer, 2007.

[8] G. Behrmann, A. David, K. G. Larsen, J. Hakansson, P. Pettersson, W. Yi
and M. Hendriks,Uppaal 4.0, In Quantitative Evaluation of Systems
(QEST 2006). IEEE Computer Society, 2006.

[9] K. L. McMillan, Symbolic Model Checking: An approach to the state
explosion problem, Ph.D. thesis, Carnegie Mellon University, 1992.

82


