
Extended Abstract: Programming Wireless Sensor
Networks using UML2 Activity Diagrams

Christoph Damm1 and Gerhard Fuchs2

Department of Computer Science 7, University of Erlangen-Nuremberg
Martensstr. 3, 91058 Erlangen, Germany
christoph.damm@googlemail.com

gerhard.fuchs@informatik.uni-erlangen.de

Summary—Wireless Sensor Networks (WSNs) consist of a
large amount sensor notes (spots). We address the problem of
how theses spots can be controlled, so that they collaborate to
fulfill a common task. UML2 Activity Diagrams (UADs) enable
the user to model workflows, describing activities, in a graphical,
structured and hierarchical manner. The novelty of our work
is that we program WSNs using UADs. Our approach not
only covers workflow description, but also action allocation. We
develop a framework to design activities describing the behavior
of WSNs and to execute those diagrams by spots, after an
automated transformation of the model file. As a result of our
first experiments, testing this framework using 12 spots, we can
say that UADs can be used to program in a platform-centric as
well as in an application-centric way. Additionally, we are able
to adapt the behavior of a spot during runtime by reloading
activities. Further research is necessary to see the full spectrum
of drawbacks and benefits of our attempt.

I. INTRODUCTION

WSNs [2] have become an important branch of research.
Teething problems like routing, clustering and energy aware-
ness in WSNs have been widely discussed and there is a
trend towards discussing how to use this new technology for
real applications. For us the research challange in the field of
WSNs lies in the huge amount of spots (hundreds, thousands,
...), which must be coordinated. Many spots should interact
and fulfill a common task. How can a programming model
cope with these distributed operations?

In this extended abstract we introduce our framework that
allows to program a WSN using a subset of UADs. We
describe related work, basics of UADs, and our preliminary
work in section II. We present important aspects of our
framework in section III, section IV describes an example
experiment using it. Finally section V concludes this exteded
abstract, gives an brief outlook to further work, and puts some
open questions.

II. RELATED WORK, BASICS AND PREVIOUS WORK

A. Programming WSNs

Sugihara and Gupta have written a detailed survey about
programming models for WSNs [3]. They have introduced a
taxonomy, distinguishing between an application-centric view
and a platform-centric view that a programming model can

1 implemented the fundament of our framework for his Master’s Theses [1]
2 corresponding author

take. Similar to us, they see collaboration as one important
requirement for WSN applications and so for a programming
model. Guerrero et al. have written a position paper [4],
discussing some theoretical aspects in the field of workflow
support for WSNs. To our knowledge a concrete implemen-
tation is not available. Unlike to our proposal they describe
the workflows using state charts, similar to us they see the
possibility to bring the programming closer to domain experts.

B. UML2 Activity Diagrams
The following subsection is based on Oestereichs book [5]

that summarizes the official specification of UML2 [6], [7].
UADs describe a workflow. An activity (diagram) is defined
by different kinds of nodes (action nodes, object nodes and
control nodes) that are connected by object flows and control
flows, symbolized by arrows. A control flow transports so
called tokens, a object flow objects.

C. eXMIcutionUnit-Plugin for ROBRAIN
We gained our first experiences to programm systems using

UADs during the Masters Thesis of Ipek [8]. He realized a
prototype for Linux with C++ as a plugin (eXMIcutionUnit)
of a multi robot programming framework called ROBRAIN
[9]. As there are much more resource constraints for spots
compared to the robots, there clearly was the need to create
a similar (in the sense of describing workflows with UADs),
but more featured and specialized framework for spots.

III. OUR FRAMEWORK

A. Avtivity-Centric View on WSNs
We aim our framework at programmers that want to code

with the following view on WSNs: A spot can execute
activities. If it executes an activity, it has the control about
it. Its scope is limited to the workflow that is described by
this activity. An action, which is included in an activity, can
be allocated to a spot. The spot, executing the activity, has the
control over this allocation process.

B. Components
Our framework consists of a tool for programming the

UADs (IDE), an execution environment for UADs that runs
on the spots (CORE), a transformation rule (RULE), and an
access software to the WSN for the user (ACCESS). We use
Papyrus UML 1.11.0 [10] as IDE, the rest is realized by us.

75

Programming an UML Activity

Design and save

activity with IDE

XMI2-file

[IDE output]

Transform and

optimize

RULE

[XSLT-File]

.activity-file

[CORE-compliant]

Fig. 1. Programming an UML Activity. RULE is offered by our framework.

C. Used Tools, Libraries and Technologies

CORE is realized for Sun SPOTs [11], which are pro-
grammed using Java ME [12]. We use kXml2.2.2 [13] as XML
(Extensible Markup Language [14]) parser. For RULE we use
XSLT (Extensible Stylesheet Language Transformation [15]).
xsltproc [16] is used to convert the Papyrus UML output,
which is XMI2.1 (XML Metadata Interchange [17]), to a
RDF (Resource Description Framework [18]) compliant file.
ACCESS is written in Java for a PC with a connected base
station.

D. Features of the Current Implementation

• A programmer programs UADs by using IDE. The output
of IDE is converted into a CORE-compatible syntax,
using RULE.

• CORE can be pre-configured with activities, which will
be loaded and parsed when CORE is started. At runtime
additional activities can be added via ACCESS.

• The execution of an activity can be started by the user
via ACCESS, or by the CORE of another spot.

• Status information of a spot (currently its supported
activities and the battery load status) can be retrieved
from CORE via ACCESS.

• CORE may execute several activities or file parsing
operations simultaneously.

• A basic scope of UAD elements is supported: start nodes,
final nodes, fork nodes, synchronisation nodes, decision
nodes, merge nodes, guards, control flow and object
flows. Furthermore implicit forks and synchronisation as
well as a hierarchical structuring of activities is pos-
sible. The UADs were expanded with two stereotypes:
� allocated � (to mark and describe the allocation
of actions) and � root � (to mark the call of Root
Activities).

• Programmers may program new RootActivities against
our JAVA interface and integrate it into CORE.

• Programmers may program new AllocationProcesses
against our JAVA interface and integrate it into CORE.

E. Programming UML Activities

The goal of the programming process is to gain a CORE-
compliant .activity - file that can be interpreted by CORE
(Fig. 1). First of all the programmer has to design and save

Initial

Node

Flow

Final Node

Activity

Final Node

[x>0]

[x<=0]

Decision

Node

Merge

Node

Decision &

Merge Node

[x>0]

[x<=0]

Fork Join

...

Fork & Join

...

...

2) Cotrol Nodes

3) Object Nodes

actionA actionB

output pin input pin

1) Action Nodes

actionB
<<root>>

actionC
<<allocated>>

actionA

4) Hierarchy

name1

name2

name2

call

activity name activityaction

activity

actionB
<<root>>

actionC
<<root>>

actionD
<<root>>

key1 key2

Fig. 2. Important aspects of UML2 Activity Diagrams.

the activity with IDE in an XMI2-file. The IDE output is
transformed and optimized using RULE.

F. Supported UAD elements

A programmer, who works with our framework, can cur-
rently use the elements shown in Fig. 2 to program an activity.
The choosen syntax, semantik and description of the UAD
elements is based on [5]–[7].

1) Action Nodes: An action symbolizes one step in an
activity. In UML a stereotype can be used to add further
information to an element. In our framework an action with
� root � - stereotype symbolizes that the corresponding
activity is realized in Java and not programmed using UAD.
The � allocated � - stereotype shows, that the action is
delegated to a spot. Our framework allows the combination of
these two stereotypes.

2) Control Nodes: An initial node is at the start of
the workflow of an activity. More than one initial nodes are
possible in an activity. CORE looks for all initial notes and

76

starts for each one a thread for the execution. A flow final
node is at the end of a single flow. CORE stops the execution
of it, the other flows are not stopped. An activity final
node indicates the end of an activity. CORE stops all flows
in the activity.

A fork node allows parallelism in activities. One in-
coming flow is immediately split in several outgoing. CORE
starts for each flow a thread for the execution. A join node
reduces parallelism and allows synchronization in activities.
CORE waits for all incoming flows before the outgoing is
started. Is is a conjunction with and-semantic. A fork &
join node is a combination of a fork and a join node.
CORE waits for all incoming flows before it starts all outgoing
flows.

A decision node must have a single flow entering it,
and one or more flows leaving it. At the outgoing flows con-
ditions are annotated that specify which flow must be chosen.
They are called guards and must allow a unique decision.
CORE has an GuardProcessor that parses the annotations
and allow to compare Strings, Integers and Doubles using the
operators =, ! =, <, >, <= and >=. The parameter x must
be set by an action of the activity. A merge node has one
ore more incoming flows. CORE waits for one incoming flow,
before the outgoing is started. This is a conjunction with or-
semantic. A decision & merge node is a combination
of a decision and a merge node. CORE waits for one incoming
flow, before it uses the GuardProcessor to take the decision.

3) Object Nodes: An object node indicates that an
object or a set of objects exist. CORE uses them as an
incoming or outgoing parameter. IDE allows to symbolized the
object node as a pin (with a square at the border of an action
node). CORE uses HashTables for the mapping between keys
and values. Per convention in our framework, the names of
the input and output pins (here key1 and key2) must fit to the
keys in the Hashtable.

4) Hierarchy: An activity consists of single actions. If
CORE detects an action it calls the activity that has the
same name (here name2). If an action is tagged with the
� root � - stereotype, CORE knows, that it must call
the corresponding Java-Class (here actionA, actionB, actionC.
As we want to concentrate on the programming using UAD,
we differ from the official specification, which says that a
CallBehaviourAction indicates the call of an activity.

G. Action Allocation

We have chosen the following syntax for an instruction that
can be added with the � allocated� - stereotype:

instruction := (method : parameter : set)→ set

method specifies an AllocationProcess (entry in a list).
param allows the modeler to specify parameters which
are necessary for the allocation process. set is a comma-
separated list of spots, from which the allocation which the
allocation process must select the target set of spots. It is
possible to substitute set with an additional instruction, so
more complex allocations can be processed recursively.

IV. EXAMPLE EXPERIMENT

A. Experimental Setup

For this experiment we have build an example WSN, which
consists of 12 spots. We have programmed a NetTemp and a
SpotTemp activity (Fig. 3) and initially deployed SpotTemp to
all spots. Afterwards we switched on the power, reset the spots,
and waited about one minute1. We transferred NetTemp to spot
a11 over the air, using the base station, started the execution
and have observed the behaviour and the final state of the
spots. We have made three experiments (series 1), waited about
half an hour, and made additional two experiments (series 2).

B. SpotTemp and NetTemp

NetTemp and SpotTemp describe the following behaviour:
The sensor network has to determine a mean value of a
temperature, decide whether the result is grater or lower than
30◦C, and to indicate it. SpotTemp is executed on a spot.
GetTemp detects the current temperature using the sensor of
the spot. The result is passed to an output-pin and if it is
grater than 30◦C all LEDs of the spot become red, otherwise
green. NetTemp runs on spot a11 and allocates the execution
of SpotTemp to four spots (� allocated � - stereotype).
The results are asynchronously passed to MeanValue, that is
allocated to spot a09. Spot a09 start the execution not till then
it has all 4 results (implicit join). If the result, calculated by
MeanValue, is grater than 30◦C all LEDs of spot a10 become
blue, otherwise those of spot a11.

C. Observed Behavior

We have repeated the experiment 5 times. After different
combinations of four spots, executing SpotTemp, turned on
their (red/green) LEDs, spot a10 or a11 turned on its blue
LEDs. Four times all four spots turned on their red LEDs,
one time all four spots turned on their green LEDs. The green
LEDs turned on at the first run of series2.

D. Interpretation and Results

As we haven’t done an exact and independent measurement
of the temperature, a quantitative conclusion is not possible.
Qualitatively we can say, that our spots have behaved as
expected. We have seen two different behaviors of the network.
Both the network and the spots have made a decision and
indicated it. We are able to program our WSN in a platform-
centric and an application-centric way.

V. CONCLUSION AND FURTHER WORK

The huge amount of spots that must be handled in large
scale WSNs is a fascinating challenge. Spots should collabo-
rate to fulfill a common task. Based on our experiences in the
field of multi robot programming, we are currently investigat-
ing how UADs can be used for programming WSNs. UADs
can be used to describe workflows in a graphical, structured
and hierarchical manner. Actions nodes, control notes, object

1For our experiment we used the standard communication protocol stack
of the spots. This means, that we had to wait, until the spots had initialized
the network.

77

SpotTemp

[else][temp>=30.0]

(spot::Spot::SpotTemp)

temp

de.fau.i7.spot.ras.edemo.GreenLED

«root»

de.fau.i7.spot.ras.edemo.RedLED

«root»

«root»

de.fau.i7.spot.ras.edemo.GetTemp

temp

NetTemp

«allocated»

SpotTemp

«allocated, root»

de.fau.i7.spot.ras.util.MeanValue

val1 val2

val3 val4

temp

temp

temp

temp
«root»

de.fau.i7.spot.ras.edemo.BlueLED

«allocated, root»

de.fau.i7.spot.ras.edemo.BlueLED

[else]

[result>=30.0]

«allocated»

SpotTemp

«allocated»

SpotTemp

«allocated»

SpotTemp

1

2

3

5

4

6

Information added to the action
(left click on it) using the
<<allocated>> - sterotype:

instr = static::a096

5 instr = static::a10

4 instr = random:uniform:a07,a08

3 instr = random:uniform:a05,a06

2 instr = random:uniform:a03,a04

1 instr = random:uniform:a01,a02

Legend:

Fig. 3. Example for the programming of WSNs using UADs. NetTemp and SpotTemp are two different UADs, programmed with Papyrus UML. The
images of them are the svg-export of Papyrus UML (with some typographical modifications). The diagrams are composed of the elements offered by Papyrus
UML. With the exception of the boxes (1-6) the content of the diagrams correspond to the Papyrus UML view. NetTemp calls SpotTemp. NetTemp is an
application-centric activity, SpotTemp a platform-centric activity.

nodes, hierarchy, parameters and stereotypes are a subset of
important aspects of UADs. We use the expressiveness of them
for our framework that give the user an activity centric point
of view on a WSN.

Our framework uses Papyrus UML as an IDE for the design
of activities, describing the behaviour of WSNs. We offer
RULE for the transformation of these activities in a RDF-
compliant file that can be executed by our CORE, running
on the spot. Additionally we provide ACCESS to supervise,
control and reprogram the spots.

First experiments, using 12 spots, show us, that our attempt
can be used to program in a platform-centric as well as in an
application-centric way. Additionally to workflow description,
our framework currently supports static and random action
allocation, and the extension of the repository of a spot during
runtime, for network reprogramming.

We are currently investigating more sophisticated action
allocation mechanisms and are about to increase the number of
spots of our WSN. Additionally we are building robots that are
controlled by the spots to gain a robot sensor network. To see
all consequences of this work we have to ask amongst others:
What features should / can be integrated in this framework?
What is a good method and scenario for the evaluation of our
framework?

REFERENCES

[1] C. Damm, “Implementierung und Bewertung eines RDF-basierten
Frameworks zur Interpretierung und Ausführung von UML2-
Aktivitätsdiagrammen auf Sensorknoten,” Diplomarbeit, University of
Erlangen-Nuremberg, Sep. 2008.

[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: a survey,” Elsevier Computer Networks, vol. 38, pp.
393–422, 2002.

[3] R. Sugihara and R. K. Gupta, “Programming models for sensor net-
works: A survey,” ACM Trans. Sen. Netw., vol. 4, no. 2, pp. 1–29, 2008.

[4] P. Guerrero, D. Jacobi, and A. Buchmann, “Workflow Support for
Wireless Sensor and Actor Networks,” in Proc. of the 4th International
Workshop on Data Management for Sensor Networks, ser. AICPS, vol.
273. ACM, 2007, (DMSN: Vienna, AT-09; Sep. 2007).

[5] B. Oestereich, Die UML 2.0 Kurzreferenz für die Praxis, 4th ed.
Munich, DE-BY: Oldenbourg Wissenschaftsverlag GmbH, 2005.

[6] OMG Object Management Group, “OMG Unified Modeling Language
(OMG UML), Infrastructure, V2.1.2,” OMG Available Specification
without Change Bars formal/2007-11-04, 2007.

[7] OMG Object Management Group, “OMG Unified Modeling Language
(OMG UML), Superstructure, V2.1.2,” OMG Available Specification
without Change Bars formal/2007-11-02, 2007.

[8] M. Ipek, “Aufgabenbeschreibung für mobile Roboterschwärme,” Diplo-
marbeit, University of Erlangen-Nuremberg, May 2006.

[9] Department of Computer Science 7; University of Erlangen-Nuremberg,
“ROBRAIN,” http://robrain.berlios.de/ [web: 2009/02/09].

[10] S. Gérard, “Papyrus UML,” http://www.papyrusuml.org/ [web:
2009/05/18].

[11] Sun Microsystems, “Sun SPOT,” http://www.sunspotworld.com/ [web:
2009/02/09].

[12] Sun Microsystems, “Java ME,” http://java.sun.com/javame/ [web:
2009/05/18].

[13] S. Haustein, “kXML,” http://kxml.sourceforge.net/ [web: 2009/02/09].
[14] W3C World Wide Web Consortium, “Extensible Markup Language

(XML) 1.1 (Second Edition),” W3C Recommendation REC-xml11-
20060816, Aug. 2006.

[15] W3C World Wide Web Consortium, “XSL Transformations (XSLT)
Version 2.0,” W3C Recommendation REC-xslt20-20070123, Jan. 2007.

[16] D. Veillard, “The xsltproc tool,” http://www.xmlsoft.org/XSLT/
xsltproc2.html [web: 2009/05/27].

[17] OMG Object Management Group, “MOF 2.0/XMI Mapping, Version
2.1.1,” OMG Available Specification without Change Bars formal/2007-
12-01, Dec. 2007.

[18] W3C World Wide Web Consortium, “RDF Primer,” W3C Recommen-
dation REC-rdf-primer-20040210, Feb. 2004.

78

