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Abstract—As battery capacities are a key limiting factor of
wireless sensor networks, harvesting energy from the environ-
ment is very attractive. For outdoor applications, solar power
seems to be the best suited energy source. However, the amount of
energy delivered from the sun changes significantly over the year,
which makes the dimensioning of the panel difficult. In this paper
we discuss the most important impact factors and introduce a
model that predicts the harvested solar power and the battery
charge over the year. In addition, we present experimental results
of the first six month of our long term experiments for validating
our model.

I. INTRODUCTION

Traditionally wireless sensor networks are powered by pri-
mary batteries, which limits their lifetime or leads to high
maintenance costs induced by exchanging drained batteries. In
addition, the limited power source urges extremely low duty
cycles, which introduces additional difficulties into the design
protocols and applications.

Hence, different power supplies have been discussed - in
particular systems that continuously harvest energy from the
environment. An overview of potential power sources for
wireless sensor networks such as air flow, pressure variation,
vibrations, human power and solar energy is given in [1].

We explored solar-powered sensor nodes in the context of
the FleGSens project [2], where a prototypic sensor network
consisting of 200 iSense sensor nodes [3] for the surveil-
lance of critical areas and properties is designed and set up.
The FleGSens project concentrates on ensuring integrity and
authenticity of generated alarms caused by trespassers, on
robustness against attackers who may compromise a limited
number of sensor nodes as well as on assuring availability over
a reasonable period of time independent of season or weather.
In order to achieve the intended network-lifetime, each node
is equipped with a solar cell and a rechargeable battery.

However, solar cells provide energy dependent on their size,
orientation to the sun and temperature of the solar module,
their output varies heavily over the year. In this paper we
present the design considerations we made during our work
and summarize our observations to a practical design guide
for solar powered systems.

We also present first experimental results to verify our pre-
diction model and show how much energy different panel types
yielded and to what extend their output power is influenced
by the seasons.

The remainder of this paper is organized as follows. The
next section presents related work. In Section III we discuss
different impact factors influencing the efficiency and derive
a model for predicting the monthly harvested solar energy.
Section IV shows our experimental results and discusses their
similarity to the model predictions. Finally, we conclude the
paper with a summary and directions for future work.

II. RELATED WORK

Much research has yet been done in order to develop energy
efficient protocols for sensor networks, but most publications
do not consider harvesting technologies. Now that more and
more harvesting systems exist researchers increasingly take
into account the provided energy when designing protocols.
The authors of [4] present a routing protocol for harvesting
systems, while [5] describes a statistic-based approach to
schedule tasks onto hardware and software. In [6] a real-time
scheduling method is discussed that jointly handles constraints
from both energy and time domain.

Based on heuristic techniques Kansal et.al. show in [7] and
[8] how nodes can learn about their energy environment and
use this information for task sharing among nodes. They use
an exponentially weighted moving-average (EWMA) as an
energy prediction model and adopt they duty cycle in case
of over- or underestimation.

In contrast, the authors of [9] investigate in which way the
duty cycle should be adapted when the harvested energy is not
predictable.

Apart from the aforementioned publications, other authors
focus on how energy harvesting systems should be designed.
As mentioned above, [1] gives an overview over potential
power sources, but discusses each source only briefly without
considering different sizes or orientation of solar panels. Fur-
thermore, it shows the differences between secondary battery
chemistries like Lithium, NiMHd and NiCd. The authors of
[10] discuss advantages and disadvantages of energy storage
technologies, too.

Technical issues are also considered in [11] and [12]. The
first introduces a power transferring circuit for optimally
conveying solar energy into rechargeable batteries. The latter
presents a multi-stage energy transfer system using two buffers
for energy storage.

III. EXPECTED POWER ESTIMATION

The difficulty in deciding which kind of solar panel to
choose for powering a sensor node is that the panel manu-
facturers only provide information on how much energy the
panel can deliver under defined laboratory light conditions.
These so called standard test conditions (STC) especially
include a lighting energy of 100mW/cm2. However, usually
no indication is given how much solar radiation arrives at the
panel over the year.

A. Impact Factors
The main corner stone when modeling the solar power that

can be harvested over the year is data regarding the average
monthly solar radiation R arriving at the surface.

Figure 1 shows the according data for Hamburg, Germany,
stated in mWh/cm2 per month. It was measured on a surface
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Month Daily solar radiation Days in Monthly solar radiation
[mWh/cm2]  month [mWh/cm2]

Jan 85 31 2635
Feb 155 28 4340
Mar 255 31 7905
Apr 360 30 10800
May 440 31 13640
Jun 490 30 14700
Jul 440 31 13640
Aug 430 31 13330
Sep 330 30 9900
Oct 205 31 6355
Nov 105 30 3150
Dec 50 31 1550
∑ 365 101945

Fig. 1. Average monthly solar radiation for Hamburg (R(M)).

tilted by 45◦ towards south, yielding a yearly cumulative
radiation of 1.020kWh/m2 [13]. The monthly radiation must
then be multiplied with the solar panel size A to get the
monthly received radiation.

However, only a fraction of the solar radiation can be
converted into electrical power. This is due to a number of
impact factors that reduce the harvested energy.

First of all, each solar panel features a specific efficiency,
i.e. a reduction factor epanel that accounts for the fact that the
panel converts only a fraction of the received solar energy into
electric power must be introduced.

Second, the radiation angle reduces the harvested energy.
While the standard test conditions assumes that the solar
radiation hits the panel orthogonally, this is unrealistic for real
deployments as the sun moves over the day as well as over the
year. Hence, the factor a = cos(α) must be included, where
α is the angular deviation from orthogonal radiation.

Third, if the harvested electric power is passed through a
voltage regulator or used for charging a battery, losses will
occur here as well, yielding a reduction factor eel accounting
for the efficiency of the electronics.

For most WSN applications, the sensor nodes operate in
alternating phases of activity and low power sleep modes.
During the sleep phases, the nodes dissipate hardly any power,
the harvested energy cannot directly be consumed but must
be stored. A common way is to use a rechargeable battery,
as it can accommodate large amounts of energy. However,
an additional difficulty arises when considering charging:
common battery technologies exhibit temperature limits to the
charge process. For example, lithium-ion batteries can neither
be charged below 0◦C nor above 45◦C.

As a result, there will be times during winter when solar
power is available but cannot be stored in the battery because it
is too cold. The same holds for the summer, when temperatures
in the enclosure can exceed the temperature limits especially
at noon. Both effects result in a typical monthly temperature
corridor exceedance loss L. However, it must be admitted that
the influence of the factor is not well-explored yet, the values
we assumed for our model are listed in Figure 2.

Finally, the battery capacity deserves some attention. As-
suming that the sensor node dissipates more energy than
the solar panel can deliver during winter (especially during
December, January and February), this deficit can be compen-
sated by energy stored in the battery before (at times when the
panel supplied more energy than spent by the node). The larger
the battery capacity C, the longer periods of insufficient solar
power can be sustained, and the more power can be dissipated
during these periods.

B. Model
Considering the impact factors (c.f. Figures 1 to 3) discussed

above, we designed a model for predicting the energy that can
be harvested with a solar panel as well as for estimating the

Month Temperature corridor
exceedance loss

Jan 25%
Feb 10%
Mar 0%
Apr 0%
May 10%
Jun 25%
Jul 25%
Aug 10%
Sep 0%
Oct 0%
Nov 0%
Dec 10%

Fig. 2. Assumed energy loss due to temperature exceedance (L(M)).

battery charge development over the year under the condition
of a given power dissipation of the sensor node.

Description Symbol Value Unit
Battery capacity C 21120 mWh
Panel size A 170 cm2

Panel Efficiency epanel 0.07
Electrical loss eel 0.7
Angular loss a 0.7
Duty cycle d 0.179
Sleeping node power dissipation Psleep 0.165 mW
Maximum node power dissipation Prunning 148.5 mW
Average node power dissipation Pnode 26.72 mW
Starting month tstart 6

Fig. 3. Constant parameters with example values.

The harvested solar energy Esolar(M) in a certain month
M ∈ {1, ..., 12} can be predicted as

Esolar(M) = (1− L(M)) eel epanel A a R(M)

by considering the temperature exceedance loss of the particu-
lar month M , the electrical efficiency, the panel efficiency, the
panel size, the loss due to the radiation angle and the amount
of solar radiation during M .

Let’s assume that the sensor node exhibits a power dissipa-
tion of Prunning at full operation and of Psleep when sleeping.
Then, if the node is running at a duty cycle of d ∈ [0.0; 1.0],
i.e. if the node is awake 100 d per cent of the time and sleeps
during the rest, the average power dissipation Pnode is

Pnode = d Prunning + (1− d) Psleep

The energy dissipated by the node in a certain month M
can then be approximated by

Edissipate(M) = Pnode 24DiM(M)

where DiM yields the number of days in month M .
Now that that all input values are defined, the energy stored

in the battery over the course of time can be calculated.
Given that E(0) is the initial battery charge, the energy E(t)

at the end of a month can then be estimated by

E(t) = min{C,E(t− 1) + Esolar(M(t))− Edissipate(M(t))}
M(t) = ((t− 2 + tstart) mod 12) + 1

where t ∈ N indicates the months since which the system
is running and tstart ∈ {1, ..., 12} is the starting month of the
estimation. The helper function M : N ⇒ {1, ...12} converts
the monotonously growing t into the proper month index
according to the starting month tstart.

The below Figure shows an example run of the battery
energy model. It uses the values given in Figures 1 to 3. High-
lighted cells in Figure 4(a) indicate that the node dissipated
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more energy than the solar cell harvested, i.e. that it drained
the battery. Note that the duty cycle was set to 25% (c.f. Figure
3), which is the maximum that can be sustained over the winter
months. Further increasing it would lead to negative values in
column three of Figure 4(a), indicating that the sensor node
ran out of battery in the according month.

The table data is additionally visualized in Figure 4(b). It
becomes obvious that the monthly power dissipation stays
more or less constant (and varies only slightly due to the
different number of days per month), while the harvested
power heavily varies over the year. During times when less
power is harvested than dissipated, the battery is drained. Its
charge goes down to about 2000mWh in January because of
the low harvesting power during winter. As the battery capacity
is 21120mWh, the charge graph never exceeds this threshold.

t ((t -2+tstart) mod 12)+1 E(t) [mWh] Esolar [mWh] Edissipate [mWh]
0 21120
1 6 21120 104958 24683
2 7 21120 97390 25506
3 8 21120 114211 25506
4 9 21120 94248 24683
5 10 21120 60500 25506
6 11 21120 29988 24683
7 12 8895 13280 25506
8 1 2203 18814 25506
9 2 16350 37185 23038

10 3 21120 75256 25506
11 4 21120 102816 24683
12 5 21120 116868 25506
13 6 21120 104958 24683
14 7 21120 97390 25506
15 8 21120 114211 25506
16 9 21120 94248 24683
17 10 21120 60500 25506
18 11 21120 29988 24683
19 12 8895 13280 25506
20 1 2203 18814 25506
21 2 16350 37185 23038
22 3 21120 75256 25506
23 4 21120 102816 24683
24 5 21120 116868 25506

(a) Table representation
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Fig. 4. Battery energy prediction over a 24 month period.

IV. EXPERIMENTAL RESULTS

To validate the model, we started an experimental evaluation
in December 2008. We used iSense sensor nodes [3] that were
connected to three different types of solar cells (Figure 5).

As shown in Figure 5(c), the nodes were equipped with a
special power management module, a lithium ion rechargeable
battery and a solar panel. The power management module
distributes the power provided by the solar panel in an
intelligent way. If the panel can deliver more power than the
sensor node requires, it charges the lithium ion battery (c.f.
Figure 6(a)). Otherwise, it reduces the battery drainage by
supplying the node with the solar power (c.f. Figure 6(b)) as
much as possible and drawing the rest from the battery.

(a) Large. (b) Medium, Small. (c) Inside view.

Fig. 5. Panel types and node setup
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Fig. 6. Energy Flows.
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Fig. 7. Power Management Concept.

Figure 7 shows a conceptual view of the solar power
management module. The Solar power is fed into the power
management component through a linear regulator. For charg-
ing the battery, a charge controller in integrated as well. The
battery current flows into and out of the battery are monitored
and logged, the battery monitor also accumulates the currents
during charging and discharging cycles, and hence provides
precise information about the energy currently stored within
the battery.

Large Panel Medium Panel Small Panel
Panel efficiency 0.09 0.12 0.11
Panel size 170 81.25 37.05
Open circuit voltage at MPP 6 9 5
Short circuit current at MPP 250 109 81
Electrical efficiency 0.8 0.4 0.63
Radiation angle efficiency 0.8 0.7 0.7

Fig. 8. Technical cell data and model settings.

The table in Figure 8 summarizes some technical data of
the solar panels used as well as the model settings used below.

Figure 9 shows both predicted and measured harvested
energy for the three panel types. The values predicted by the
model are always indicated by white bars, while the dark bars
indicate the energy harvested in reality. Note that so far, real-
world data is available for a small number of months only.

The different dark bars in Figure 9(a) need some further
explanation. The black bars indicate the harvested energy by
our first test node equipped with a large solar panel. It can
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(b) Medium Panel
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Fig. 9. Experimental Results.

be seen that prediction and measured values highly resemble
during the first two months of our experiment - December and
January. After that - from February to May - the according
harvesting results are pretty disappointing. In April we found
the reason for this: Because the battery was fully charged most
of the time, only a fraction of the available solar energy could
be harvested.

In order to find out how much energy could really be
harvested, we employed additional sensor nodes in May and
ensured that at least one of them at a time harvested the full
solar energy into an empty battery. The according amount
of energy harvested in May is indicated as the dark gray
Harvested max bar. We then interpolated the energy that could
have been harvested from February to April and indicated it
with the light gray Harvested max (interpolated) bars.

The harvested energy of the smaller solar panels is shown
in Figure 9(b) and 9(c). Prediction model and measured values
highly match even though both devices harvested a bit more
than expected in May.

V. CONCLUSION

Supplying a sensor network with solar energy promises
nearly perpetual operation, but several impact factors signif-
icantly influence the amount of potentially harvested energy
and must be taken into account when design decisions are

made. We presented a model that allows to predict both the
harvested energy as well as the corresponding battery charge.
We verified our model by long term experiments with different
solar panels whose results are also shown. Even though the
energy harvested in reality basically follows the predictions of
the model, further work is needed.

The first results presented here for example hint that the val-
ues assumed for the temperature exceedance loss are not very
realistic. However, the experiments will provide additional data
that will help to improve the model.

In addition, we are planning to implement a duty cycle
control system that is based upon the models presented here.
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