
A Prototype Implementation of the TinyOS Hardware
Abstraction Architecture for Ferroelectric RAM

Sebastian A. Bachmaier
Material Testing Institute

Universität Stuttgart
Stuttgart, Germany

sebastian.bachmaier@mpa.uni-stuttgart.de

Abstract—This report presents a hardware driver for the Ram-
tron Ferroelectric RAM (FRAM, FeRAM) chips for use in Ti-
nyOS according to TinyOS' Hardware Abstraction Architecture.
FRAM is a replacement for flash memory, suitable for usage in
Wireless Sensor Networks (WSNs) for its properties. The proper-
ties of FRAM and flash are shortly depicted and compared. The
design of the driver implementation is described, including a chip
clustering method to circumvent the capacity limitation. The
driver offers the DirectStorage interface and the BlockStorage
interface for usage by applications. Comments on the suitability
of the provided interfaces, intended for flash memory originally,
for FRAM are given.

Index Terms—TinyOS, FRAM, driver, hardware abstraction
architecture

I. INTRODUCTION
In this report, TinyOS, TinyOS drivers and FRAM are in-

troduced shortly. Then, the architecture of the driver imple-
mentation is shown, the clustering of several chips is described
and finally the suitability of existing TinyOS flash storage
abstractions is assessed.

A. TinyOS and its Driver Model
TinyOS is an operating system and library of code compo-

nents for sensor networks. The further development is done by
working groups and by user contributions. Working groups can
issue TinyOS Extension Proposals (TEPs), specifying best
practices for new code contributions.

TEP2 [1] is one of the central TEPs for TinyOS 2.0. It de-
scribes a hardware abstraction architecture (HAA). The HAA
specifies a three-layered architecture for driver implementa-
tions. The three layers comprise the hardware presentation
layer (HPL), which exposes the hardware's capabilities direct-
ly, the hardware adaptation layer (HAL) which abstracts the
hardware and allows to maintain states in software, and the
hardware interface layer (HIL) which offers a standardized
platform-independent interface for applications, irrespective of
the underlying hardware components. Drivers reside in a chip
directory by convention, with some additional code in a plat-
form directory where code is placed which states the platform
specifics, like specific hardware pins.

B. Ferroelectric RAM (FRAM)
FRAM is a relatively new memory technology which com-

bines the best from static RAM memory (fast, energy efficient)

and flash memory (non-volatile). It is based on a ferroelectric
material which retains its state even when currentless. FRAM
is a suitable replacement for flash.

TABLE I. shows a simplified comparison between flash
and FRAM memory properties. Please note that the values for
a specific application have to be taken from the actual data-
sheet of the actually used chip. Values may vary greatly, espe-
cially for the energy consumption per stored bit as this depends
not only on the used chip, but also on the calculation model,
e.g. the assumptions made with respect to read-write cycle
times and the assumed bus speed. Hence, the data is only given
to stress some main differences. These are: (1) the durability in
terms of write cycles. This is irrelevant for many applications
however. (2) The capacity which is in favor of flash memory
since being in a later stadium of the development cycle and the
smaller manufacturing processes. (3) The energy effort to store
a bit. This is an important quantity in WSNs for the power
limitations imposed to the system owing to the desired auto-
nomous operation over long time periods.

TABLE I. SIMPLIFIED FLASH–FRAM COMPARISON

Comparison with
respect to …

Type of Non-Volatile Memory
flash FRAM

Available Interfaces SPI/I2C/Parallel SPI/I2C/Parallel

Sleep Mode Current 1 µA 1 µA

Data Retention > 10 a > 10 a

Write Cycles ~ 105 ~ 1010

Capacitya ≤ 32 Gibit (parallel)
≤ 128 Mibit (SPI)

≤ 4 Mibit (parallel)
≤ 2 Mibit (SPI)
≤ 1 Mibit (I2C)

Energy
Consumptionb 90 nJ/bit 1.1 nJ/bit

Write Speed/bytec ~ 10 µs ~ 400 ns

a. Development is making rapid progress. This is a snapshot view only. Capacity varies
with physical chip/die size.

b. These values differ greatly with the usage model used for calculation and the actual chip.

c. Depending on bus speed, data unit size and others.

Ramtron, Colorado Springs, CO offers FRAM chips with
SPI bus which are meant to replace serial flash memory. The
SPI protocol used is similar to the one of flash chips. Pin com-
patibility is also given. It is therefore easy to replace flash by
FRAM. The realization here is for the FM25H20 type.

This work was funded by the 7th Framework Programme of the European
Commission.

39

II. IMPLEMENTATION
The implementation follows that of the STM25P flash chip

by Hui [2]. The components should reside in tinyos-
2.x/tos/chips/fm25h and platform/<platform-
name>/chips/fm25h. However, the contribution resides at ti-
nyos-2.x-contrib/ustutt where it can be retrieved from.

A. Hardware Presentation Layer (HPL)
The HPL offers no erase and pageProgram commands, but

offers a write command instead. In FRAM writes are possible
without prior erase. The write command operates on data units
of down to single bytes. Flush is not implemented since data is
always written through. Sleep mode support is available.

B. Hardware Adaptation Layer (HAL)
Two HAL implementa-

tions are offered: one simp-
ler HAL for single chip
mode and a ClusterHAL
component for clustered
operation of several chips
under a flat, continuous
address space. Standard
wiring uses the single chip
HAL. The single chip HAL
is similar to the STM25P
implementation.

C. ClusterHAL
While the FRAM offers

some advantages over flash
memory it still offers less
capacity. This is due to the
smaller packing density,
which is caused by the larger
manufacturing process sizes
and the ferroelectric material
properties.

We therefore had to bun-
dle several chips to get a
memory size comparable to
the 1 MiB of the TelosB
which were used as reference. The resulting cluster was desired
to act like one big memory under a unified address space. This
means a dispatcher has to handle accesses to the unified ad-
dress space and direct them to the corresponding chip. The
dispatcher is provided on the HAL layer. This has the advan-
tage of having the HPL unchanged for cluster or single chip
operation. Furthermore, HPL can be stateless and "present" just
the operations the FRAM offers. However, the layering in this
approach is not strictly adhered to as for clustered operation the
IO pins are handled by the HAL, transparently to the HPL (see
Figure 1). The HPL just accesses the chip select (CS) to acti-
vate the large virtual chip (of which the HPL is ignorant of)
and the HAL activates the appropriate physical chip deter-
mined by the memory address that is accessed. Memory ac-
cesses across chips are split into several separate operations.
Other approaches are conceivable and can be implemented
later. E.g., a strictly layered architecture would access several
individual HPLs, but code is replicated then.

D. Hardware Interface Layer (HIL)
For a description of two prototype implementations of HIL

refer to chapter III. The implementation here follows the
STM25P implementation.

III. SUITABILTY ASSESMENT OF FLASH ABSTRACTIONS

A. BlockStorage Interface (TEP103)
TEP103 [3] standardizes three fundamental storage abstrac-

tions found in typical sensor network applications: BlockSto-
rage for program memory, ConfigStorage for little chunks of
configuration data and LogStorage for data logging application.
TEP103 aims solely at flash memory and incorporates special-
ties of flash memory. However, the flash functionality is a
subset of FRAM functionality, i.e. FRAM has fewer restric-
tions to consider. It should therefore be possible to realize these
storage abstractions for FRAM. For workload restriction, of the
three storage abstraction of TEP103, only the BlockStorage
was implemented exemplarily.

B. DirectStorage Interface (TEP128)
TEP 128 ([4], draft version) describes an interface for direct

access to non-volatile storage. It offers read, write, erase, flush
and crc commands. It differs primarily in two points from the
abstractions of TEP103: (1) the interface is an application in-
different general purpose interface, and (2) the implementation
(in conjunction with the VolumeSettings interface) is platform
independent. TEP 129 describes a new set of BlockStorage,
ConfigStorage and LogStorage which resides above the plat-
form-independent intermediate DirectStorage interface.

There are some comments to the DirectStorage interface
which occurred during implementation of the interface. Due to
the missing sector size of FRAM, the sector size can artificially
be set to either an arbitrary size (for easier programming a
fraction of a power of two) or it can be set to 1 which is the
natural sector size of FRAM. This leads to two consequences:
(1) the volume information structure fm25h_volume_info_t
which is set in the tool tos-storage-fm25h should define both
base and size as uint32_t instead of unit8_t to accommodate the
larger size numbers (this is internal to the chip specific tool
chain and has no consequences to the interfaces), and (2) the
erase command's parameter eraseUnitIndex (and the corres-
ponding eraseDone event's) should likewise be uint32_t, in-
stead of uint16_t. This results from the erase unit size which is
of size 1 as well. However, here the advantage of an artificially
introduced larger erase unit size becomes obvious. For erasing
larger memory regions less function calls were necessary then.

A last comment is given on the DirectModify interface sig-
nature. It is perhaps preferable to name all completion events in
the same manner and so rename the completion event of modi-
fy(…) to modifyDone(…).

IV. CONCLUSION
FRAM can replace flash memory when low-power opera-

tion in combination with short write access times is of impor-
tance. Drawback is the smaller maximum capacity per chip. If
the capacity is a limiting factor, several chips can be clustered
as proposed. Several HIL interfaces originally intended for
flash memory were successfully implemented. Recommenda-

Figure 1. HAA of the clustered opera-
tion: the HPL is ignorant of the actual-
ly used chip as this is dispatched by
the HAL (GeneralIO interface)

40

tions were made to the DirectStorage and DirectModify inter-
faces, both being still in draft status and open for changes.

ACKNOWLEDGMENT
S. B. likes to thank Helmut Ernst for his support in the

hardware development of the sensor nodes used for this work.

REFERENCES
[1] V. Handziski, J. Polastre, J.-H. Hauer, C. Sharp, A. Wolisz, D. Culler,

D. Gay, "TEP2 – Hardware Abstraction Architecture".

http://www.tinyos.net/tinyos-2.x/doc/html/tep2.html. Date of access:
2009-05-25

[2] J. Hui, "Implementation of the TEP103 for the ST M25P serial code
flash". http://tinyos.cvs.sourceforge.net/viewvc/tinyos/tinyos-
2.x/tos/chips/ stm25p. Date of access: 2009-05-28

[3] D. Gay, J. Hui, "TEP103 – Permanent Data Storage (flash)".
http://www.tinyos.net/tinyos-2.x/doc/html/tep103.html. Date of access:
2009-05-25

[4] D. Moss, J. Du, P. Dutta, D. Ganesan, K. Klues, A. Martin, G. Mathur,
"TEP128 - Platform Independent Non-Volatile Storage Abstractions".
http://www.tinyos.net/tinyos-2.1.0/doc/html/tep128.html. Date of access:
2009-05-25

41

