Exploiting Platform Heterogeneity in Wireless Sensor Networks for Cooperative Data Processing

8. GI/ITG KuVS Fachgespräch "Drahtlose Sensornetze" 2009, Hamburg

httc – Hessian Telemedia Technology Competence-Center e.V - www.httc.de

KOM - Multimedia Communications Lab Prof. Dr.-Ing. Ralf Steinmetz (Director) Dept. of Electrical Engineering and Information Technology Dept. of Computer Science (adjunct Professor) TUD – Technische Universität Darmstadt Merckstr. 25, D-64283 Darmstadt, Germany Tel.+49 6151 166150, Fax. +49 6151 166152 www.KOM.tu-darmstadt.de

Dipl.-Ing. Andreas Reinhardt

Andreas.Reinhardt@KOM.tu-darmstadt.de Tel. +49 (0) 6151 16-6010

AR___KuVS_FGSN09__Hamburg__2009.08.13.ppt

© author(s) of these slides 2008 including research results of the research network KOM and TU Darmstadt otherwise as specified at the respective slide

Image source: www.dreamstime.com

20. August 2009

Traffic Characteristics in Wireless Sensor Networks

Problem statement

Benefits of Platform Heterogeneity

- Comparison of current mote platforms
- Analysis of their energy consumptions

Exemplary Application Scenarios for Heterogeneous WSNs

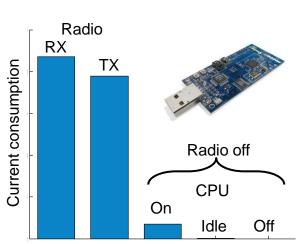
- Data compression
- Cryptographic operations
- High data rate sample processing

Sensor Network Characteristics

General Traffic Characteristics

- Limited number of connections
 - Network management to immediate neighbors
 - Data transport to sink node
- WSNs are often organized in a convergecast manner
 - All sensor data is routed to the sink

Energy is a crucial aspect in WSNs...


Battery charge limits node and network lifetime

...but radio operation is expensive

- CC2420 radio transceiver
 - RX: 19.7 mA, TX: 17.4mA, off: 1µA
- MSP430 microcontroller
 - on: 0.33mA, idle: 1.9µA, off: 0.2µA

3

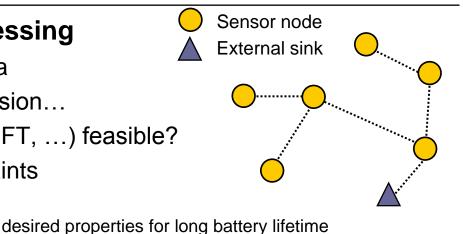
Energy consumption of tmote sky nodes

KOM – Multimedia Communications Lab

Sensor node

External sink

Problem Statement


Local and/or in-network data processing

- Perform operations on the sensor data
 - Averaging, min/max, basic compression...
 - But are more complex operations (FFT, ...) feasible?
- Limited due to mote hardware constraints
 - Low computational power
 - Available memory (RAM / Flash) ,
 - Cost
- Data processed at external sink node instead
 - Necessitating (multi-hop) radio transmissions

Find means to shift processing tasks into the WSN

At an overall saving in energy consumption

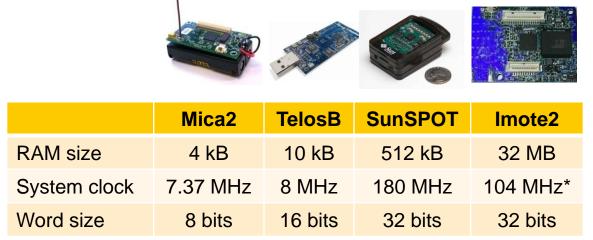
Integrate (computationally) heterogeneous mote platforms

Traffic Characteristics in Wireless Sensor Networks

Problem statement

Benefits of Platform Heterogeneity

- Comparison of current mote platforms
- Analysis of their energy consumptions


Exemplary Application Scenarios for Heterogeneous WSNs

- Data compression
- Cryptographic operations
- High data rate sample processing

Benefits of Platform Heterogeneity (I)

Comparison of current mote platforms

* The Imote2 can dynamically scale its frequency from 4 – 416 MHz

Significant differences in system clock and RAM size

- Mica2 and TelosB well suited for sensing and simple processing
- SunSPOT and Imote2 well suited for processing tasks

Does deploying dedicated processing nodes make sense?

Benefits of Platform Heterogeneity (II)

Energy consumptions in sleep and active mode

	Mica2	TelosB	SunSPOT	Imote2
Sleep current	15 µA	1 µA	31 µA	820 µA
Active current	8 mA	1.8 mA	80 mA	66 mA
Word size	8 bits	16 bits	32 bits	32 bits

Energy consumptions by processor platforms signfigicantly higher

- BUT: Higher clock speed leads to shorter duty cycles
- Comparison of the energy demand for a function of 100,000 instructions:

	Mica2	TelosB	SunSPOT	Imote2
Execution time	13.6 ms	12.5 ms	0.55 ms	0.96 ms
Energy per call	327 µJ	67.6 µJ	82.7 µJ	98.4 µJ
Average power	3.3 mW	0.68 mW	0.85 mW	1.37 mW

Power consumption of TelosB and SunSPOT very close

Emulation overhead when executing 32 bit operations on 16 bit microcontroller

Traffic Characteristics in Wireless Sensor Networks

Problem statement

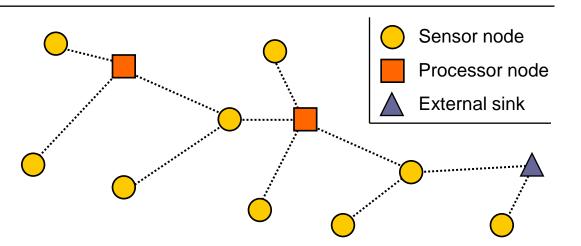
Benefits of Platform Heterogeneity

- Comparison of current mote platforms
- Analysis of their energy consumptions

Exemplary Application Scenarios for Heterogeneous WSNs

- Data compression
- Cryptographic operations
- High data rate sample processing

KOM – Multimedia Communications Lab 9


High data rate signal processing

- Processor nodes can extract features inside the network
- Significant reduction of traffic to the sink

Cryptographic operations

- Often, motes are incapable of performing strong cryptographic operations
- Onen, motes are incapable of performing strong
 Form "clouds of trust" around processor podes
- Form "clouds of trust" around processor nodes
- Only encrypted data may leave the cloud

- Data compression
 - Compress results of in-network aggregation
 - Allow for more sophisticated compression algorithms

Exemplary Application Scenarios

Traffic Characteristics in Wireless Sensor Networks

Problem statement

Benefits of Platform Heterogeneity

- Comparison of current mote platforms
- Analysis of their energy consumptions

Exemplary Application Scenarios for Heterogeneous WSNs

- Data compression
- Cryptographic operations
- High data rate sample processing

Summary and Outlook

TECHNISCHE UNIVERSITÄT DARMSTADT

Heterogeneous wireless sensor networks

- Integration of processing nodes into the WSN
 - More processing power
 - Greater amounts of memory
- Power consumption is similar to motes for equal application sizes
- Amount of multi-hop convergecast radio traffic can be reduced

Heterogeneous sensor networks are a viable way to save energy

Outlook

- Improve energy model of sensor nodes
- Investigate partitioning algorithms
 - Which amount of data to process locally, which amount to forward?
- Perform simulations using tmote sky and SunSPOT nodes
- Verify findings using a real testbed

Thank You for Your Attention!

Department of Electrical Engineering and Information Technology Multimedia Communications Lab - KOM

TECHNISCHE UNIVERSITÄT DARMSTADT

Dipl.-Ing. Andreas Reinhardt

Andreas.Reinhardt@KOM.tu-darmstadt.de

Merckstr. 25 64283 Darmstadt Germany Phone +49 (0) 6151/166010 Fax +49 (0) 6151/166152 www.kom.tu-darmstadt.de