
waqaas.munawar@rwth-aachen.dehttp://ds.cs.rwth-aachen.de

Remote Incremental Adaptation
of Sensor Network Applications

Waqaas Munawar, Olaf Landsiedel, Muhammad Hamad
Alizai, Klaus Wehrle

2

Motivation

WSN require uninterrupted
operation indefinitely

Customizing the system to the
environment

Feature upgrades
Retasking of the System

Post-deployment software updates
are common

Bug Removal

Sources of Images: http://www.eecs.harvard.edu/~mdw/proj/volcano/

Under Water
Sensors

Base Station

3

Motivation – contd.

State of the art
Image replacement
Virtual machines
Dynamic OS’s

Disadvantages:
Energy wastage, Restricted reconfigurability, Clean slate approaches

TinyOS – A framework to generate application specific OS
Component based architecture
Select app components, statically analyze and optimize
Supports only full binary upgrades

Goals
Energy Efficient, Fully configurable, Integrated and Transparent,

Fulfilling usual Embedded System Constraints

4

Outline

Motivation

Strategy

Architecture
Overview
Components
Update Procedure

Evaluation
Transfer cost
Update cost

Conclusion & Future Work

5

Strategy

TinyOS as a base
Seasoned code repository
Wide user base
Runtime wiring

Mote Reconfiguration

Appropriate
Components wired

together

Compiled +
Linked +
Loaded

Mote reconfigured
with a new

Monolithic Binary

A B

C

• Statically linked
• Monolithic (OS + App)

Application

Mote Hardware

• Component structure
PreservedA

B

C

6

Architecture – Overview

Runtime Wiring

Required
Isolate individual nesC
components
A runtime Manager/Linker

A
B

C

Manager
Mote Hardware

Traditional TinyOS Mote Reconfiguration
Process needs modifications

7

Architecture – Overview contd.

Main Components
Host

Configuration Generator
Mote

Manager (TinyMan)
Linker
Memory Manager
Interrupt Router
File System
Controller
Global Symbol Table

8

Architecture – Host

Configuration Generator
Disambiguates NCC’s operation

A Normal TinyOS app Separately compiled TinyOS app

9

Architecture – Mote

TinyMan
Linker

Memory Manager: Manages
allocation of internal flash
Loader: loads the linked
Objects into program
memory

Interrupt Router
Reroutes interrupts to the

functions registered as ISRs
File System

Manages storage and retrieval of ELF objects to and from non-volatile
storage.

Symbol Table
Manages list of available symbols for cross linking support

10

Architecture – Update Procedure

A new version
of a component

is received

After an update
command is

received

New component
is integrated

11

Evaluation – Update Cost

Update Cost in terms of Energy Include
Multihop communication cost
Cost of processing a received update

Multihop Communication Cost

Transfer cost proportional to the size of object

* Blink with Deluge = 21132 bytes

Moderate energy consumption for transfer

12

Evaluation – Update Cost contd.

Update Processing Cost

Linking consumes most
energy

Exponentially proportional
number of string comparison
operations

Does not depend on size of
update

Linking: prime candidate
for optimization

13

Future Work & Conclusion

Conclusion
Sensor network applications reconfigured

Remotely, Incrementally, With selectable granularity

Transparent operation – user friendly
Reasonable Memory footprint
Almost zero performance overhead

Future Work
Automating the Configuration Generator
ELF format optimization

Size Reduction due to 16 bit addressing is 8%

Wiring compatibility checks
Versioning scheme

14

Thank you
Questions ?

15

Sys Internals

16

Related Work

Category Solution Update Mechanism Pros /Cons

Image
Replacement

Xnp
New Binary Image

+ No linking Required
+ Relatively transparent operation
+ No Execution Overhead
‐ Large communication overheadDeluge

Virtual Machine Maté New Script
+ small communication overhead
‐ Coarse configuration granularity
‐ Large execution overhead

Dynamic
Operating
System

Impala New Application ‐ Fixed kernel + App side API

Contiki New ELF File
‐ Independent from TinyOS
‐Multiple ELFs not supported

SOS New PIC Module ‐ PIC modules

FlexCup New Module ‐ Not compatible with new nesC features

FiGaRo New Module ‐ Clean slate approach, A new C API used

17

Evaluation

Evaluation Criteria
Update Cost
ELF format suitability
Memory Footprint
Performance Overhead

Setup
Platform used: telos rev B
Applications Used

FFT Calculator: A processor intensive application with no IO
Blink: An IO intensive application, Uses Timers
Radio ping: Application to analyze Multihop Transfer Costs

18

Memory Footprint - On telosB
7.7 % of RAM, 32 % of total program memory, 1.4% of total non-volatile
storage

Performance Overhead
A worst case delay of 23 cycles in interrupt processing

Memory, Performance

System Name Flash ROM (bytes) RAM (bytes)
SOS Core 20464 1163
TinyOS with Deluge 21132 597
Bombilla Virtual Machine 39746 3196

TinyMan 15826 792

19

App. Components ELF Size Tx. Energy
(mJ)

Saving Factor
(Vs. Deluge)

Blink

BlinkC 836 58.77 25.2
LedsC 1600 112.48 13.2

Msp430TimerC 4644 326.47 4.5
BlinkAppC 7156 503.06 2.9

Total 1000.78 --

Multihop Communication Cost

20

Update Processing Cost

Application Steps
Size
(B)

Time
(s)

Energy Consumed
(mJ)

Blink

Storing 14236 0.9 11.4
Linking 14236 43.2 305.1
Loading 4756 1.5 16.7

Total 45.6 333.2

21

Detailed Memory Footprint

Component Flash ROM (bytes) RAM (bytes)

File System 5630 228

Platform Initializer 454 0

Linker

Linker Main 368 4

Memory Management 344 84

Loader 2460 24

Interrupt Router 1092 30

Global Symbol Table 1028 74

Node Runtime 390 0

Hardware Drivers

UART 102 259

Flash Write 158 4

SPI 54 0

Ex Flash 726 0

Library Reference 3020 85

Total 15826 792

22

ELF Sections Detail

