
Sensor Network Support for Real-time Indoor
Localization of Four-rotor Flying Robots

Juergen Eckert, Falko Dressler and Reinhard German
Computer Networks and Communication Systems

Department of Computer Science 7, University of Erlangen, Germany
{juergen.eckert, dressler, german}@informatik.uni-erlangen.de

Abstract—We present a sensor network based indoor localiza-
tion system that uses ultrasonic distance measurements for real-
time localization of flying four-rotor robots. Such quadrocopters
are on-board sensor controlled systems. They are very sensitive to
lateral drifts, which cannot be compensated by mounted sensors.
In our work, we provide a framework for time-of-flight based
localization systems relying on ultrasonic sensors. It is optimized
for use in sensor nodes with low computational power and limited
memory. Nevertheless, it offers scalability and high accuracy even
with erroneous measurements. We implemented the system in our
lab using ultrasound sensor that are light enough to be carried
around by the flying object. Using this real-time localization
system, a position controller can be implemented to maintain
a given position or course.

I. INTRODUCTION

Flying four-rotor robots are similar to helicopters. In con-
trast to mono-rotor systems, these so-called quadrocopters
usually provide more sensors and more robust controllers. A
combination of gyrometers and acceleration sensors is used
to determine its current state. Based on these measurements,
a digital controller continuously adjusts the orientation of
the platform. In such a way devices can easily be piloted
by other digital systems such as a sensor network. By only
controlling the pitch and the roll angles, the current position
cannot be obtained. The quadrocopter always hovers on top
of an air cushion. Thus, any minimal measurement error or
any airflow may cause a drift to a random direction. The
system remains highly in-stable w.r.t. position maintenance.
Angle corrections must be permanently applied in addition to
the board instruments to keep the flying robot in position.

Figure 1 shows the scenario. A quadrocopter is relying
on an external positioning system to continuously update its
system parameters. In general, there are many cases in which
applications benefit from getting more accurate positioning
information. A discussion of preferences for systems using
active or passive mobile devices can be found in [1]. If privacy
is an issue, passive localization systems should be preferred.
For example, the infrastructure of the Cricket system [2] has
no knowledge about the current position of any mobile device.
However, this system architecture also has several disadvan-
tages. The accuracy suffers if the mobile device moves during
a series of (at least three) measurements. In some cases, e.g.
using ultrasound, this is a strong limitation because a set of
measurements can take up to several hundred milliseconds.

Therefore, we investigated appropriate real-time localization

Fig. 1. Four-rotor flying robot hovers over reference points

techniques and came up with a new solution that perfectly
meets the needs in this application domain. We implemented
a system based on ultrasonic distance measurements that
is lightweight and can be carried by our quardrocopter. In
summary, we not only provide a framework for our chosen
scenario but also for other cases of real-time indoor localiza-
tion. More detailed information can be found in [3].

II. MATHEMATICAL PROCEDURE

This section covers the procedure of computing position
information out of gathered distance measurements. We rely
on ultrasonic distance estimation for time-of-flight (TOF)
based lateration.

A. Preliminarities

We assume to start with a set of n tuples Ti, each consisting
of a distance di to a reference point with a known position
and the coordinates of this point −→xi :

Ti = (di,
−→xi) : −→xi = (xi, yi, zi)T , i ∈ [1, n] (1)

The trilateration problem can be solved for the unknown
position −→x = (x, y, z)T in different ways. Theoretically, the
problem can be solved by a closed mathematical expression
as shown in Equation 2. However, in practice, it is impos-
sible to solve those n equations at once due to error-prone
measurements.

(xi − x)2 + (yi − y)2 + (zi − z)2 = d2
i ; i ∈ [1, n] (2)

Several iterative optimization algorithms exist for the prob-
lem. For example, Foy [4] uses a Taylor-series estimation.
At least for 2-dimensional problems, the method converges
to a good solution within a few iterations. Another common
approach is the use of an extended Kalman filter [5]. Abroy

1



and co-workers [6] present such a non-iterative solution,
however, with tremendous restrictions in terms of scalabil-
ity and variability. Exactly three reference points, precisely
oriented to each other are required: the coordinates have to
be −→x1 = (0, 0, 0)T , −→x2 = (x2, 0, 0)T , and −→x3 = (x3, y3, 0)T .
In order to apply this system to a general case, a coordinate
transformation (offset and rotation) would be needed. Because
this requires non-negligible computational effort, this method
cannot be applied in many scenarios.

B. Position calculation

One common feature of all indoor location systems attracted
our attention. Given that all reference points are mounted to
the ceiling, the wall, or the floor, they all have one coordinate
in common. Let us denote this as the z coordinate. We exploit
this information for a closed position calculation.

First, a distribution of all tuples Ti into m subsets Sj to
pairs of three different points must be done. The precise subset
generation method will be explained later in Section II-C. For
the moment, we assume we have m subsets that fulfill the
condition that all z coordinates within a subset Sj are equal.
Furthermore, it must be defined a priori whether the object to
be localized is above the selected cj , i.e. z ≥ cj , or below,
i.e. z ≤ cj . Then, we can compute m possible coordinates
for the unknown object out of the m subsets. Using a set of
three single equations from (2) and taking the characteristics
of each subset Sj into account, we can form a linear equation
system:

A−→x =
−→
b : A ∈ R2×2,−→x ∈ R2,

−→
b ∈ R2 (3)

This 2-dimensional problem can be solved easily be ap-
plying Gaussian elimination. For the computation of the x
and y coordinates, only simple arithmetic operations are
needed such as addition, subtraction, and multiplication. Those
are very basic (and fast) operations, available on low cost
micro-controllers. The z coordinate can be generated in two
ways. The easiest way is simply to measure it, which is
straightforward using an ultrasound system. Alternatively, the
already computed values can be inserted in Equation 2, which,
however, requires a square root function for the used micro-
controller.

C. Subset generation

In theory, one subset Sj , which contains three tuples Ti,
would be sufficient for position estimation. However, taking
measurement errors into account, more subsets are required.

Casas and co-workers [7] investigated all kinds of ultrasonic
measurement errors. They came up with an average rate of
measurement failure of Pmf = 30 %. A position estimation
can only be successful if at least one correct subset Sj is
used for evaluation, where a correct subset corresponds to
one that contains only accurate measurements. Pm denotes
the probability that none of the chosen subsets is correct. The
required number of subsets can be calculated as follows [7]:

m =
log(Pm)

log(1− (1− Pmf )3)
(4)

Thus, for example, 11 subsets are required if we accept a
failure probability of Pm = 1 %. Furthermore, the authors
suggest that Monte Carlo techniques should be applied to
randomly pick m subsets. However, more information about
the subsets could help to improve the selection. In general,
subsets with geometric shapes that minimize the error rate
of the position calculation should be preferred (e.g., regular
or well-formed triangles). Thus, the basic idea is to generate
and, subsequently, to qualify a subset. Afterwards, it can be
placed in a sorted list. Finally, the first m elements in this list
are then used for the position calculations.

We decided to use a weighted combination of the average
measured distances and the covered ground of the three points
would be suitable. Both values are important for a well-formed
but (mostly) non-regular tetrahedron (3 reference points plus
the unknown point). The base area of the figure is a triangle.
Usually, this can not be computed very fast because square
root or trigonometric functions would be needed. Therefore,
we used the cross product −̂→n = −→a ×−→b (with −→a = −→x2 −−→x1

and
−→
b = −→x3 − −→x1). Its length directly corresponds to the

covered area. The base area is parallel to the x–y plane, so
the cross product only contains a z component. This length
can therefore be computed very fast.

D. Position estimation

Finally, the m possible positions (stored in X(k+ 1) : X ∈
R3×m) have to be merged to one position −→x (k+1). The trivial
approach would be the calculation the mean of all positions.
However, outliers would significantly influence the result.
Casas et al. [7] used an approach where a squared residual
vector between all measured and all theoretical distances for
each subset is computed. By taking the minimum median of
the individual elements the influence of the outliers vanishes.
Unfortunately, the computational effort for this method in-
creases with the number of reference points and, therefore,
is not very scalable.

We incorporated prior knowledge into the position estimator.
Casas method [7] provides localization without any state
information. However, already collected information could be
exploited to gain better localization results. Thus, we split the
estimation process into two steps in a similar way like an
extended Kalman filter. In the first step, we predict the current
position −→xp(k + 1) using a state vector:

−→xp(k + 1) = −→x (k) + ∆−→x (k, k − 1) · r · κ(r) (5)

r =
∆t(k + 1, k)
∆t(k, k − 1)

(6)

For this vector, in each step we store the position and the
localization time. The second step is slightly different from
the original design of the filter. We generate the new position−→x (k + 1) by selecting the nearest computed position to the
predicted position out of the set X(k + 1).

The more time has elapsed since the last computation in
relation to the last interval, the less reliable the prediction gets.
The correction function κ() in Equation 5 has been designed
for compensating this effect. By using the ratio between the

2



Fig. 2. Position prediction

localization attempts, this mechanism can be automated. Fur-
thermore the absolute computation frequency is not relevant.
κ() is a function of r (Equation 6), which denotes the ratio of
two time intervals. κ() is a simple function that returns 1 for
values between 0 and 1. For greater values, the output slowly
decreases 0. Figure 2 illustrates the prediction vector and the
growing space of the position acceptance. As shown on the
left side, the prediction vector grows uninfluenced over time
if the ratio r is smaller than 1 and, therefore, κ() is 1. Thus,
κ() does not influence the prediction. The right side shows the
situation if the ratio r increases beyond 1. This means that the
last localization interval (i.e., the time between two accepted
positions) was shorter than the elapsed time since the last
position was accepted. Now, κ() is being decreased because
at this time a proper prediction based on the movement during
the last interval can not be guaranteed.

III. LOCALIZATION PERFORMANCE

Scalability is one of the biggest issues in the context of
sensor networks. In order to proof our localization algorithm
works even on resource constricted embedded systems, we
implemented the system and evaluated it in a lab scenario.
In particular, we used the SunSpot sensor node platform [8]
running JavaME as the host operating system. One of the key
issues is the creation of the subsets. For reasons explained
in Section II-C, we limited the number of subsets to 11.
Independent of the number of reference points, an upper
boundary for the classification can be given. The limitation of
subsets implicitly restricts the position vector calculation time
to an upper boundary, too. Thus, not every possible position
needs to be calculated: Only positions from subsets that meet
a certain threshold in the qualification are being considered.

Figure 3 shows the total computation time. The worst case
scenario (blue) is a combination of the techniques that are not
bounded in computational time. All subsets are computed and
the residual based position estimation [7] was applied to the
best 11 subsets. In the best case scenario (red), only techniques
with a bounded computational time are used. So an upper
boundary for the localization algorithm can be given indepen-
dent of the number of used reference points. This is important
to fulfill the real-time specification. The best case decentral
scenario (green) describes the absolute minimal computational
time consumption for the initiator of the localization, if subset

3(1) 4(4) 5(10) 6(11) 7(11) 8(11) 9(11) 10(11)

Reference Points (Subsets)

T
im

e 
in

 µ
s

0
20

00
0

40
00

0
60

00
0

Worst Case
Best Case
Best Case Decentral

Fig. 3. Total localization time

grouping and position vector calculations are distributed on
the entire sensor network. Unfortunately, the overhead of the
communication latency is far too big to benefit from it, at least
using our available hardware.

IV. TEST SYSTEM

Figure 1 shows the latest version of our ultrasonic measure-
ment system including the sensor nodes. Despite the classical
master-slave topology, we decided for a hybrid measurement
architecture. Whether a device is master (transmitter) or slave
(receiver) is completely hardware independent and can be
controlled on application level. The detection field of the
system is designed to be a hemisphere. Thus, the reference
points on the floor can not only detect the flying object but also
each other (this architecture is depicted in Figure 1). This way,
it is possible to span up the grid automatically by attaching the
reference points on top of mobile robots. Another advantage of
a flying active beacon, as mentioned before, is that by sensing
the TOF of its own active chirp the altitude of the object can be
computed without the help of the localization infrastructure.

For the measurements shown in Figure 4, we placed the
four-rotor robot at an arbitrary but fixed position over the
detection field (four reference points arranged in a square of
2 m of edge length). It can be seen that there are four centers of
gravity. Each subspace is the region for the computed position
of one of the four possible subsets. Within this space, the
maximum variance is about ±2 cm. The estimated position
is normally confined to one of those regions. But as soon
as the used subset is missing, the estimated point jumps to
another subspace. The temporary vanishing of a subset can
have two main reasons. First, one of the measurements was
wrong and, therefore, the position was too far away. Secondly,
the wireless communication may be disrupted. The generation
of the regions is based on systematic errors of the reference
points’ positions. In our tests, we ensured an accuracy of about
±3 cm. With increasing deployment accuracy of the reference
points, the resulting regions merge into a single one.

V. COMMUNICATION

For communication we used the on-board radio capabilities
of the SunSpot. It contains an IEEE 802.15.4 compatible phys-
ical interface (Chipcon CC2420) for wireless communication.

3



0.84 0.88 0.92

1.
74

1.
76

1.
78

1.
80

y

z

1.12 1.16 1.20

0.
84

0.
88

0.
92

x

y

1.12 1.16 1.20

1.
74

1.
76

1.
78

1.
80

x

z

x

y

z oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
ooooooooooooooooooooooooooooo
ooooooooo

ooo
oooooo
o
o

o
o

oooooooooooo
oooo

ooo
o

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

ooooooooo
oooooo

o o
o

ooo
oo

o

o

o

oo
oo

ooooooo

oo

oooo

oo

o

o

o
o

o
oo

o oo
o

o

oooooo

oooo

oo

ooooo

oooooo

ooooooo
o

oooooooo

ooooo

oo

oo

oo

oo

ooooooooo

o

ooooo o
o
o
oooo

o
o

o o
ooooooooo

o

oo

oooo
oo ooooo

oo

o
ooo

o
ooo

o
o
ooo
oooooooo

oo
oo ooooooooo oo

o
o ooooo oooooo oooooo

ooo
oooooo

o

ooooo
o

oo
o

ooooooooooooooo

o
oooooooooooooooooooooooooooo

o

o
ooo oooooo

o
oooo

o

oooo ooooooooooo
oo
oooooo

ooo oooooooooooo
oooo

o
ooooo ooooooooooooooooooooooooooo

o

ooo ooooo

oooo

o

oooo
o
o
ooooooooo

o
ooooooooooooo

o
ooooo

o

ooooooooooo
oo
o

oo
oo
oo
oooooooooo

o
oooooooooooooooooooooooooooooooooooooooo
ooooooooooooooooooooooooooooo

o
ooooooooooooooooooooooooooo

oo
oooooooooooooooo

oo
ooooooooooo
o
ooo
oooooooo

oo
oo

o
ooooo

ooo
oooooo

oo
ooo

o
oooooo

Fig. 4. Localization accuracy: the quadrocopter is fixed in a position, the
measured x, y, z coordinates are plotted

Due to its low power specifications the emitted signal is not
very strong and therefore the range is limited as well.

After performing a measurement, the measured values are
distributed on the sensor network. These data have to be
transmitted back to the active beacon for location computation.
Our first attempt was to dispatch a request and to have all
sensor nodes with relevant data reply to this using the Aloha
technique [9] (using broadcast). But in our environment shown
above the probability of getting three or more measurements
responses were under 65 %. Relying on unicast packets is not
feasible, because if a packet can not be delivered, the whole
transmission unit can be blocked for more than 10 s. The
impact on the flying object of course would be dramatic. The
system would not be real-time capable any more. Therefore
we developed a custom agent user-level protocol based on
broadcasts. The initial frame is broadcasted by the active
beacon without any payload. One field of the frame must
contain an identifier. That allows the agent to de- and emerge
while hopping over the nodes and collecting the data. Three
things can happen, if a node receives an agent frame. If the
agent frame is already known, it is simply dropped. If it is new
to the system, a departure time is generated depending on its
options. Additionally, relevant measurements are added before
the departure. If an agent arrives with the same identifier as one
in the departure queue (duplicate agent), new information from
the more recent frame is copied to the one in the queue. Then,
the agent frame is dropped. The data collection is not only
possible on the initiator side but also on the rest of the system,
if desired. All measured information can be made accessible
on every sensor node in range without extra radio load.

For the latest agent protocol the sum of probabilities for
three and four reference points per cycle is more than 95 %
(compared to 67 % for the simple broadcast case). Further-
more, the probability for four reference points has significantly

increased from 30 % for the broadcast case to about 82 %. This
allows for a much more precise position estimation.

VI. CONCLUSION

We investigated the problem of continuous indoor local-
ization for flying autonomous robots. In contrast to ground-
based robots, any waiting until position measurements have
been completed or taking advantage of additional support
systems such as odometry are not possible in this case. Thus,
a real-time localization is needed that must also take weight
constraints into account.

Considering these requirements, we developed an algorith-
mic procedure that advances the state of the art in indoor
localization by being able to perform real-time localization
based on possibly error-prone distance measurements. The
basic assumption is that one coordinate of the reference points
needs to be equal. Without loss of generality, we set the z coor-
dinates to a constant value. This allows a closed mathematical
calculation that is even possible to be performed by low
resource sensor nodes. If, however, a coordinate transformation
needs to be executed, the localization algorithm suffers from
the computational complexity of this transformation. We im-
plemented and evaluated the algorithm in our lab. The results
demonstrate the feasibility of the solution. We consider our
ultrasound lateration technique a necessary step for completely
autonomous operation of flying robots in indoor environments.

REFERENCES

[1] A. Smith, H. Balakrishnan, M. Goraczko, and N. Priyantha, “Tracking
Moving Devices with the Cricket Location System,” in 2nd International
Conference on Mobile Systems, Applications, and Services (MobiSys
2004). Boston, MA: ACM, June 2002, pp. 190–202.

[2] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan, “The Cricket
Location-Support System,” in 6th ACM International Conference on
Mobile Computing and Networking (ACM MobiCom 2000). Boston,
MA: ACM, August 2000, pp. 32–43.

[3] J. Eckert, F. Dressler, and R. German, “An Indoor Localization Frame-
work for Four-rotor Flying Robots Using Low-power Sensor Nodes,”
University of Erlangen, Dept. of Computer Science 7, Technical Report
02/09, May 2009.

[4] W. Foy, “Position-Location Solutions by Taylor-Series Estimation,” IEEE
Transactions on Aerospace and Electronic Systems, vol. AES-12, pp. 187–
194, March 1976.

[5] L. Kleeman, “Optimal estimation of position and heading for mobile
robots usingultrasonic beacons and dead-reckoning,” in IEEE Interna-
tional Conference on Robotics and Automation, vol. 3, Nice, May 1992,
pp. 2582–2587.

[6] M. Abreu, R. Ceres, L. Calderon, M. Jimenez, and P. Gonzalez-de Santos,
“Measuring the 3D-position of a walking vehicle using ultrasonic and
electromagnetic waves,” Sensors and Actuators: A. Physical, vol. 75, pp.
131–138, June 1999.

[7] R. Casas, A. Marco, J. Guerrero, and J. Falco, “Robust Estimator for
Non-Line-of-Sight Error Mitigation in Indoor Localization,” EURASIP
Journal on Applied Signal Processing, vol. 2006, pp. 1–8, 2006.

[8] R. Smith, “SPOTWorld and the Sun SPOT,” in 6th International Confer-
ence on Information Processing in Sensor Networks, Cambridge, April
2007, pp. 565–566.

[9] N. Abramson, “THE ALOHA SYSTEM: another alternative for computer
communications,” in AFIPS Joint Computer Conferences. Houston:
ACM, November 1970, pp. 281–285.

4


