
TUHHTUHHInstitute of TelematicsInstitute of Telematics

Hamburg University of TechnologyHamburg University of Technology

Bachelor Thesis

Energy-Aware and
Prediction-Based Scheduling for
Energy-Harvesting Sensor Nodes

by

Florian Meier

September 2011

First Examiner Prof. Dr. Volker Turau
Institute of Telematics
Hamburg University of Technology

Second Examiner Christian Renner
Institute of Telematics
Hamburg University of Technology

Declaration by Candidate

I, FLORIAN MEIER (student of Informatik-Ingenieurwesen at Hamburg University
of Technology, matriculation number 20836390), hereby declare that this thesis is
my own work and effort and that it has not been submitted anywhere for any award.
Where other sources of information have been used, they have been acknowledged.

Hamburg, 1st September, 2011

Florian Meier

Table of Contents

List of Symbols iii

1. Introduction 1

2. State of the Art 5
2.1. Sensor Networks and Deployments 5

2.1.1. Sensor Nodes . 5
2.1.2. Sensor Network Deployments 6

2.2. Residual Energy and Energy Consumption 6
2.2.1. Premeasured Energy . 7
2.2.2. Componentwise Energy Measurement 7
2.2.3. iCount . 8
2.2.4. Conclusion . 8

2.3. Prediction Techniques . 9
2.3.1. Exponentially Weighted Moving Average 10
2.3.2. Weather Conditioned Moving Average 10
2.3.3. Variable Slot Lengths . 10

2.4. Energy-Aware Load Adaption . 11
2.4.1. Harvesting-Aware Power Management 12
2.4.2. Linear Quadratic Tracking 14
2.4.3. Multiparametric Linear Programming 15
2.4.4. Energy Management for Time-Critical Applications 16
2.4.5. Directive-Based Energy Management 16

3. Requirement Analysis 19
3.1. Demands for Wireless Sensor Networks 19
3.2. Analysis of Hardware Requirements 20
3.3. Performance Levels for Energy-Aware Scheduling 21

4. Energy-Aware and Prediction-Based Scheduling 25
4.1. Energy Policies . 26
4.2. Energy-Progress Simulation . 28

4.2.1. System Model . 28
4.2.2. Adaptions for Simulation 30
4.2.3. Solution of Differential Equation 32

i

TABLE OF CONTENTS

4.3. Energy Consumption . 35
4.4. Algorithm . 35

5. Software Design and Implementation 37
5.1. Design Considerations . 37

5.1.1. Job Concept . 38
5.1.2. Energy Aware Scheduler 39

5.2. Implementation . 41
5.2.1. Energy Manager . 41
5.2.2. Simulation . 42
5.2.3. Sample Jobs . 42

6. Evaluation 45
6.1. Metrics . 45
6.2. LQ-Tracker . 46
6.3. Policy Assessment . 48
6.4. Influence of System Model Parameters 52

6.4.1. Prediction . 52
6.4.2. Number of Performance Levels 53
6.4.3. Capacity of Supercapacitor 53

6.5. Real-World Deployment . 54
6.6. Limitations . 54

7. Conclusion 55

Bibliography 59

A. Content of the DVD 63

ii

List of Symbols

Λ series of performance levels ranging from 1 to λmax

N number of slots

ls length of slots s

τs starting time of slots s

T prediction horizon

Ph(t) power produced by the harvesting device

P̃h(t) predicted power produced by the harvesting device

Ih(t) current produced by the harvesting device

Ĩh(t) predicted current produced by the harvesting device

Ic(t) capacitor current consumption

Vc(t) capacitor voltage

Ec(t) capacitor energy

Ṽc(t) predicted capacitor voltage

Pc(t) power flow into capacitor

In(t) sensor node current consumption

Vn sensor node supply voltage

Pn(t) sensor node power consumption

Pn sensor node power consumption averaged over one slot

ηB coulombic efficiency of a battery

η efficiency of DC-DC converter

iii

L IST OF SYMBOLS

iv

Chapter1Chapter1

Introduction

Monitoring is a frequent application in today’s life. Engineers observe bridges and
historical buildings to detect signs of fraction early enough to take countermeasures.
Scientists desire to observe animals in the wild, volcanoes or glaciers to gain insight
into these phenomena. These are only a handful of examples.

Conventional monitoring of the environment either requires laying cables to connect
each sensor to the base station, which collects all data from the individual sensors.
If this is impracticable, all data is stored by each sensor and collected manually.
Both methods are cost and time intensive, thus rendering them infeasible for many
applications. Moreover, they may interfere with the subject of interest, caused by the
invasive deployment or by the frequent presence of humans: This may be impossible
due to legal restrictions (e.g., in monument conservation) or may lead to a biased result
(e.g., in wildlife monitoring). In order to tackle these problems alongside the high costs
in terms of time and financial outlay, wireless sensor networks have been developed.
They consist of so-called sensor nodes, which are tiny and cheap electronic devices
with restricted memory and processing resources. They are also equipped with low-
power radio for communicating among each other. This enables collaborative tasks
and automatic, wireless data collection. The tiny size and low price of sensor nodes
provides the opportunity of non-invasive monitoring and of large-scale deployment to
achieve fine-grained spatial resolution.

A sensor node is typically powered by small batteries as energy source. This limits
the theoretical lifetime of the sensor nodes and produces high maintenance costs,

1

1. INTRODUCTION

because the batteries have to be replaced regularly. The lifetime ranges from a few
days up to some years depending on the a-priori scheduled load of each node. A false
estimation or other unforeseen problems that arise from large-scale deployments may
lead to a considerably reduced lifetime.

Therefore, much effort has been put into reducing the energy consumption of
the sensor nodes, e.g. low power radio communication and energy-aware routing to
name the most active areas of research. Yet, this only prolongs lifetime but cannot
prevent battery replacement. Furthermore, the time space between depleted batteries
and replacement will produce measurement gaps. This can reduce the significance
of the data or even render it useless. To be dependent on maintenance is especially
inappropriate for wireless sensor networks in harsh and difficult to reach environments,
such as mountains or for arctic observations.

In these environments, however, it is often possible to utilize regenerative energy
sources, e.g., solar, wind or thermal energy. This technique is referred to as energy
harvesting. Installing a harvesting device, i.e., a solar cell or a wind generator, allows
for sustainable and self-sufficient node operation. The harvested energy can be buffered
with rechargeable batteries or supercapacitors, which can compensate times with no
energy intake, as regenerative energy sources neither provide a steady nor an evenly
distributed energy supply.

Conventional harvesting-powered sensors have large harvesting devices and energy
buffers in order to prevent them from running out of energy in any case, which make
them expensive. Much of this dearly paid energy is wasted, because there have to be
enough reserves for times with poor energy conditions. Moreover, to keep the benefits
of tiny sensor nodes alive, the harvesting devices have to comply with their size.

In many applications of wireless sensor networks the high cost is a knock-out
criterion as these networks often consist of many hundred sensor nodes, hence a low
price per unit is required. Costs can be reduced by scaling the harvesting devices and
energy buffers down and compensate this by adapting the system’s performance to the
available energy. Thus, few energy is wasted, because the harvesting device produces
less excess energy, which on the other hand can be transferred into useful benefit.
The goal to strive for is energy neutral operation, i.e. harvested and consumed energy
energy are balanced.

This bachelor thesis develops an algorithm that accomplishes this task and can
run on state-of-the-art sensor nodes. The algorithm adapts itself continuously for

2

many reasons: First the weather itself is highly dynamic. A behavior that is suitable at
summer can be poor at winter. Second it is very likely that different nodes in a sensor
network face different energy conditions, e.g., because one could be located under a
tree while another one is directly exposed to the sun. Third these conditions could
change due to environmental changes (e.g., growing plants) or aging effects of the
hardware.

The algorithm uses the concept of performance levels, defined by the application
designer. In contrast to existing solutions, the algorithm thus allows for an application-
specific adaption of the performance to meet the energy conditions of a sensor node.
To achieve this goal it utilizes three concepts proposed in the literature: Assessment of
the residual energy, prediction of future energy intake and the expected consumption
in each performance level.

This thesis evaluates the performance of the algorithm via simulation using real-
world solar traces and compares it with another solution proposed in literature. It
shows that the developed algorithm can adapt the system performance quickly to the
current energy conditions, while showing an adequate low variance during a day. The
evaluation in this thesis also shows that other algorithms are inapplicable for the used
hardware, either because they can not be adapted to the hardware or are unstable with
it.

Alongside the development of an algorithm a ready-to-use software for sensor
nodes based on the TinyOS platform, a popular operating system for wireless sensor
networks, is implemented. It demonstrates the usefulness and applicability of the
algorithms and is tested in a real-world deployment.

3

1. INTRODUCTION

4

Chapter2Chapter2

State of the Art

This chapter gives an overview about characteristics and basic concepts of wireless
sensor networks. Furthermore, techniques needed for implementing an energy-aware
scheduler for wireless sensor networks are introduced. Finally existing algorithms for
energy-aware scheduling are presented.

2.1. Sensor Networks and Deployments

2.1.1. Sensor Nodes

A sensor node is a tiny electrical sensing device. It contains various sensors and typi-
cally a low-power 8-bit microcontroller and a radio chip with a transmission speed of
250 KBit/s. Modern sensor nodes are also equipped with so-called energy-harvesters,
i.e. modules harvesting regenerative energy from the environment. Examples are
Enviromote [KSS+07], Trio [DHJ+06] and the one presented in [RJT09] that was
used in this thesis. The energy harvester is supported by a battery or a supercapacitor
buffering spare energy in order to ensure sustainable operation even in times where no
harvesting is possible.

5

2. STATE OF THE ART

2.1.2. Sensor Network Deployments

Today many applications of wireless sensor networks are found in the field. The
environments range from glaciers with no settlement within kilometers [MPE+06]
to downtown Tokyo [OII+07]. In these two scenarios, coin sized hardware driven by
lithium button cells were used. Much bigger lead acid batteries supported by solar
panels driving a sensor network for warning about rainfall-induced landslides in India
[Ram09].

Some wireless sensor networks are developed for a special research and therefore
designed for finite lifetime in the first place. They are perfect for investigation of
microclimate with high spatial resolution, examples being redwood trees [TPS+05]
or potato fields [LBV06]. They permit deferred message sending, e.g., as reported by
the authors, the data from the potato field is only needed once in the morning, when
the treatment of the field is planned. The potato plants induced a problem, because
the growing plants degraded the radio range. Furthermore, the large-scale deployment
raised some problems with the software caused by wrong assumptions: The radio
protocol assumed non moving sensor nodes. This is virtually correct, because the
sensor nodes were mounted at fixed positions at the field. The problem aroused from
the fact that they were turned on before mounting them on the field.

In [SMP+04] sensor nodes were used for non-invasive habitat monitoring at Great
Duck Island. Among others, sensor nodes were placed in breeding burrows in or-
der to detect residing birds. All of the three last named papers used batteries and
report on premature node failure, either because software bugs led to a higher energy
consumption or the energy consumption was estimated inaccurately.

2.2. Residual Energy and Energy Consumption

Energy-aware algorithms rely on information about a node’s energy consumption. It
is necessary to know how much energy each job, e.g, measurement, transmitting a
message, consumes in order to create an execution plan. Each job draws a specific
amount of energy, as the execution time and the used hardware components (e.g.,
microprocessor or radio) vary.

6

2.2. RESIDUAL ENERGY AND ENERGY CONSUMPTION

Furthermore, the residual energy left in the energy buffer, must be predicted. For a
capacitor, the voltage can be measured resulting in the residual energy

Ec(t) =
1
2

CVc(t)2 (2.1)

2.2.1. Premeasured Energy

The first approach is to calibrate each job before deployment. An execution of a job is
measured externally, e.g, by an oscilloscope, before deployment. These values serve as
fixed configuration for the scheduler. Therefore, it neither needs software nor hardware
support. This needs high manual effort before deployment. The other problem is that
the consumed energy may change. For example, the energy consumed by the radio
depends on link quality, e.g., because of messages that have to be retransmitted.
Furthermore, because of low cost hardware, the consumption may vary between
different sensor node. This would require measurements for each single sensor node.

2.2.2. Componentwise Energy Measurement

An approach for on-line energy measurement was introduced in [DOTH07]. A compo-
nent (e.g., the radio) can have many states (e.g. sending, listening). Each component
has at least two states (e.g., on and off). The power a component c drains in state b is
denoted Pc,b. This power can be measured without knowledge of the concrete software
implementation. The problem of measuring the energy consumption is converted into
the problem of measuring the time tc,b a job resides in a component’s state with high
resolution as introduced in [SDS10]. The resulting energy is

Ej = ∑
c

∑
b

tc,b · Pc,b. (2.2)

This takes care of packet retransmission etc. and does not need a manual configura-
tion of each job, but introduces overhead in terms of calculation, because there is a
multiplication at every state change.

7

2. STATE OF THE ART

2.2.3. iCount

The last solution is hardware based. Dutta et al. [DFPC08] presented an energy
measurement approach for sensor nodes driven by a switching regulator. A switching
regulator transfers small amounts of energy in recurring cycles. The energy is buffered
by an inductor. Each cycle delivers the energy

Ecycle =
1
2

Li2, (2.3)

where i denotes the peak current in the inductor. It is thus possible to count the
number of cycles and deduce the total energy transferred. This can be achieved by
wiring the switching regulator to a counter of the microcontroller. This method can be
used to estimate overall consumption or the per job consumption: At the beginning
of a job the counter is reset to zero. The value of the counter M at the end of the job
yields the energy consumption

Ej = M · Ecycle. (2.4)

2.2.4. Conclusion

Table 2.1 summarizes the different approaches.

Advantages Disadvantages

Premeasured � Simple implementation
� Inaccurate
� High manual effort

Componentwise � Accurate (if well calibrated)
� Calculational overhead
� It is necessary to calibrate

the components

iCount
� Accurate
� Simple implementation

� Hardware modification and
calibration needed

�� Table 2.1.: Advantages and disadvantages for various energy consumption ap-
proaches

8

2.3. PREDICTION TECHNIQUES

2.3. Prediction Techniques

At a point in time t the regenerative energy source has a harvesting potential H(t).
Depending on the hardware used, this could be a power Ph(t) or a current Ih(t). The
actual benefit from this potential depends on the current system state. It is not even
guaranteed, that this potential can be used by the system, because it could have a full
energy buffer.

Many energy aware algorithms use a prediction unit for predicting future energy
intake. Its prediction lasts a time T into the future. This time duration is referred to
as prediction horizon. For solar-powered devices a prediction horizon of one day is
reasonable, because the sun has a periodicity of one day.

0 4 8 12 16 20 0 4 8 12 16 20 0
0

2

4

6

8

now

Prediction Horizon

T

ls

H̃(τs)

time of day [h]

[mA]

measured solar current
predicted solar current

τs

�� Figure 2.1.: Sample profile with measured solar current and prediction for next day.

A frequently used technique is to partition the prediction horizon into N intervals

[τs, τs+1), also referred to as slot, with τN = τ0 + T, where τ0 is the time at the start
of each period, e.g., twelve o’clock at night for solar powered harvesters. Each slot
has a length ls = τs+1− τs and a predicted mean value µs, so the predicted harvesting
potential at time t is

H̃(t) =
N−1

∑
s=0

µs if t ∈ [τs, τs+1)

0 else
. (2.5)

9

2. STATE OF THE ART

Note that H̃(τs) = µs. This notation is depicted in 2.1 on the preceding page. The
use of slots saves memory compared to the complete storage of the measured values.
At a specific number of slots, the error resulting from this is smaller than the error that
arises from the uncertainty of the weather.

2.3.1. Exponentially Weighted Moving Average

In order to find the prediction values µs, an approach that was introduced by [KHZS07]
is based on slots with a fixed length and maintains an exponential weighted moving
average for each slot. After a slot ends, the prediction for this slot is updated by means
of the measured mean value H(s− 1)

µs ← αµs + (1− α) · H(s− 1), 0 < α < 1 (2.6)

2.3.2. Weather Conditioned Moving Average

This technique was enhanced by Piorno et al. [PBAR09] by taking the current day’s
condition into account. The authors state that a day with poor condition at the morning
will likely be poor for the rest of the day. Therefore, the prediction for the following slot
is scaled by the prediction error in the directly preceding slots. Using one preceding
slot, the prediction of the following slot is denoted

µ̃s ← αµ̃s + (1− α) · H(s− 1), 0 < α < 1 (2.7)

µs ← βµ̃s ·
H(s− 1)

µ̃s−1
+ (1− β) · H(s− 1), 0 < β < 1 (2.8)

2.3.3. Variable Slot Lengths

Another approach presented in [Ren10] is based on the observation, that the harvesting
potential varies a lot at some times, while it varies less (or even is zero) at other times.
In order to exploit this fact, variable slot lengths are introduced in order to reduce
the variance and with it the prediction error within one slot. The adaption of the slot
lengths is done online in order to adapt to environmental changes. This is necessary,
because the harvesting profile is changing during the year as depicted in Fig. 2.2 on
the next page.

10

2.4. ENERGY-AWARE LOAD ADAPTION

0

10

20

30

0 6 12 18 24

cu
rr

en
t

(m
A

)

time of day (h)

(a) March

0

10

20

30

0 6 12 18 24

cu
rr

en
t

(m
A

)

time of day (h)

(b) July

�� Figure 2.2.: Harvesting profiles at different times of the year recorded by the same
sensor node with unaltered position [Ren10]

During the day, the errors resulting from the averaging of each slot are measured.
At the end of the day, the slot with the highest error is splitted, while two consecutive
slots with small errors are merged, if the total error is reduced by this operation.

2.4. Energy-Aware Load Adaption

This section describes some existing approaches for energy-aware load adaption. At
time t the sensor node draws a power Pn(t). We assume that the underlying hardware
utilizes a DC-DC converter to guarantee a fixed input voltage. The DC-DC converter
has an efficiency η. Thus, the energy unit has to provide a power Pn(t)

η . It is supplied
by the harvester or, if this not suffices, by battery or supercapacitor.

The algorithms presented in this chapter result in a assignment of duty cycles Ds

to future slots. A duty cycle is the ratio where the system is in an energy consuming
active state Pn ≈ 50 mW or more, compared an idle state with low power consump-
tion Pn ≈ 30 µW. This is often only related to the radio, because it is the heaviest
consumer of the system, but can also include other system components (e.g., duration
of calculations or measurement rate).

The aim to strive for is energy neutrality introduced by Kansal et al. in [KHZS07].
The outgoing energy must not outrun the incoming energy (harvested plus initial

11

2. STATE OF THE ART

energy). For a system without energy buffer this means

Ph(t) ≥
Pn(t)

η
, ∀t ∈ [0; ∞) (2.9)

By using an ideal energy buffer (infinite capacity, no loss), the sensor node can be
supplied, even if no power is harvested, but the buffer has enough energy:

∫ T

0
Ph(t)dt + Ec(0)︸ ︷︷ ︸

harvested & initial energy

≥
∫ T

0

Pn(t)
η

dt︸ ︷︷ ︸
consumed energy

, ∀T ∈ [0; ∞) (2.10)

with Ec(0) being the initial energy stored in the buffer. A not empty energy buffer at
all times t is sufficient in order to reach energy neutrality:

Ec(t) > 0, ∀t ∈ [0; ∞) (2.11)

If this holds true, then there is no time, where the total consumed energy exceeds the
harvested plus the initial energy. The original definition allows for the case where
Ec(t) = 0, but there is enough harvesting power to drive the system. This is excluded
in the last statement, because it is an unstable case: Coming from Ec(t) > 0 this case
can only be reached if the consumed power exceeds the harvested power, but this
would lead to system failure as soon as Ec(t) = 0 is reached.

2.4.1. Harvesting-Aware Power Management

One of the first systematic approaches towards power management in energy harvest-
ing sensor networks is [KHZS07]. The authors based their considerations on a system
model as depicted in Fig. 2.3. It matches their hardware named HelioMote [RKH+05].
It has the possibility to bypass the battery in order to prevent losses due to the charging
circuit and the batteries efficiency ηB (0 < ηB < 1). The authors report on a typical
value of ηB ≈ 70 % for NiMH batteries. The power from the harvester Ph(t) can
be used directly by the sensor node with efficiency η. Excess energy is stored in the
battery, which then can only be used with an overall efficiency ηB · η.

12

2.4. ENERGY-AWARE LOAD ADAPTION

Charge
Controller
and Switch

Sensor
Node

DC-DC
Converter

(η)Battery (ηB)
Solar Panel

�� Figure 2.3.: System model by Kansal et al.

The algorithm developed in [KHZS07] searches an optimal series of duty cycles

〈D0, . . . , DN−1〉 in such a way, that the sum is maximized:

max
N−1

∑
s=0

Ds,

Dmin ≤ Ds ≤ Dmax ∀ s ∈ [0, N − 1].

(2.12)

The slots are assigned to two sets depending on whether the battery is charging (Sc)
or discharging (Sd), i.e.

Sc = {s | P̃h(τs) ≥ Pn} (2.13)

Sd = {s | P̃h(τs) < Pn}. (2.14)

As the algorithm tries to reach energy neutrality, the incoming energy should
balance the outgoing energy

N−1

∑
s=0

ls · P̃h(τs) = ∑
s∈Sc

ls · Ds ·
Pn

η

+ ∑
s∈Sd

ls · Ds ·
(

Pn

ηB · η
+ P̃h(τs)

(
1− 1

ηB · η

))
.

(2.15)

For ηB < 1 and for hardware as depicted in Fig. 2.3 it is always better to use as
much energy as possible without buffering. In order to maximize (2.15) the authors
are using the initial assignment

Ds = Dmin ∀ s ∈ Sd, (2.16)

Ds = Dmax ∀ s ∈ Sc. (2.17)

13

2. STATE OF THE ART

If this leads to a too high energy consumption, the duty cycle in the charging slots
is reduced uniformly. If there is excess energy, the discharging slots with the largest
coefficients will be set to Dmax, too. According to the authors this algorithm leads to
the optimal solution of (2.12) on the preceding page for their hardware.

Dynamic Duty Cycling

Due to the fact, that there always is a error in the prediction of energy intake, the
algorithm presented in the previous section is supported by an additional algorithm.
It compares predicted values P̃h(τs) and observed values Ph(τs) and adjusts the duty
cycles of following slots accordingly. The excess energy is defined as

EX =

P̃h(τs)− Ph(τs) if Ph(τs) > Pn

P̃h(τs)− Ph(τs)−
(

P̃h(τs)− Ph(τs)
) (

1− 1
η

)
Ds if Ph(τs) ≤ Pn

.(2.18)

For EX < 0 it is necessary to reduce the duty cycle in subsequent slots. It will
reduce the duty cycle in slots with lowest harvesting potential first. For EX > 0 the
algorithm increases the duty cycle. In order to account for better energy utilization this
is done in slots with highest harvesting potential first. This algorithm complements
the one described in the last section, which is executed once a day in order to find
appropriate duty cycles for the next day. The algorithm presented in this section
accounts for prediction errors during the day. However, the prediction error can not
completely compensated, because duty cycles in elapsed slots can not be corrected.

2.4.2. Linear Quadratic Tracking

The so-called LQ-Tracker, developed in [VGB07], uses a model-free approach that
needs no knowledge about the hardware and does not rely on an explicit prediction
technique. Furthermore, reduction of duty cycle stability is addressed.

A constant energy level V∗c is assumed as optimal course by the authors. The
objective is to reduce the mean square error of the voltage Vc(t) at discrete time steps t

min lim
N→∞

1
N

N

∑
t=1

(Vc(t)−V∗c)
2. (2.19)

14

2.4. ENERGY-AWARE LOAD ADAPTION

This matches a linear-quadratic (LQ) tracking problem as described in [KV86]. The
sporadic energy income is modeled as noise. The authors derive the optimal control
law for (2.19) on the preceding page

D =
V∗c − (a + c) ·Vc + c ·V∗c

b
, (2.20)

while the parameters a, b and c are estimated online with gradient descent techniques
[KV86]. An additional part of the algorithm accounts for reducing duty-cycle variance.
This is achieved by introducing an exponentially weighted moving average

Dt = (1− α) · Dt−1 + α · D, 0 < α ≤ 1. (2.21)

The averaged duty cycle is weighted with the current, optimal duty cycle

D̂t = β · D + (1− β) · Dt, 0 < β ≤ 1. (2.22)

Appropriate parameters α and β were determined by experiment in [VGB07], but
depend on the deployment.

2.4.3. Multiparametric Linear Programming

The authors of [MTBB07] set their focus on implementing a wide range of linear
programs with restricted resources. An example would be to maximize the execution
rate of a job, such as a measurement, or to maximize the minimal duty cycle. The
associated linear program is to maximize λ subject to

Ds ≥ λ, ∀ s ∈ [0, N − 1] (2.23)

0 ≤ Ec +
s−1

∑
r=0

lr ·
(

P̃h(τr)−
Pn

η
Dr

)
∀ s ∈ [1, N]. (2.24)

The first inequality formulates the minimum duty cycle λ to use. (2.24) calculates
the predicted energy level in slot s. Furthermore it contains an inequality to take
account for the fact that the energy buffer can not contain negative energy. Ec denotes

15

2. STATE OF THE ART

the current energy level. The linear program can be extended by other constraints (e.g.,
used memory buffer for radio packets).

It is too complex to solve this linear program on a sensor node with standard
techniques like simplex algorithm, as the dimension of the solution space is N (the
number of slots, e.g., 12). The authors developed an algorithm to solve such a linear
program on sensor nodes by precalculating some parts offline before deployment.

Hierarchical Control Design

An extension was introduced in [MTBB08]. The algorithm consists of two layers with
one linear program each: A worst-case layer which maximizes the minimal available
energy per day and an average-case layer, which is responsible for short-term power
saving. The calculated energy per day is used by the average case algorithm. This way
the complexity is reduced compared to a single linear program and it is robust against
poor weather conditions.

The algorithms by Moser et al. are not dependent on a specific system model,
although they were developed for a system like the one in [KHZS07] with a by-
passable charging circuit as depicted in Fig. 2.3 on page 13. They can be adapted to
different hardware as long as it does not contain any nonlinearities, but a complex
system model results in a large state space with high computational complexity.

2.4.4. Energy Management for Time-Critical Applications

Besides duty cycle adaption there are other concepts to control the node’s energy
consumption, e.g, Dynamic Voltage Scaling (DVS) and Dynamic Modulation Scal-
ing (DMS). Zhang et al. [ZSA10] developed the concept of Harvesting Aware Speed
Selection (HASS). HASS maximizes the minimal energy level of each node, while
maintaining the required performance of the network. This is useful if an energy buffer
for energy intensive tasks is desirable ("emergency situation").

2.4.5. Directive-Based Energy Management

While the previous approaches are algorithms to reach energy neutrality in harvesting
systems, the authors in [JTO+07] set their focus on energy policies as a set of directives
that should be met at run-time in order to reach a given lifetime with battery driven

16

2.4. ENERGY-AWARE LOAD ADAPTION

systems. The directives have priorities so that the system can disregard the least
important directives if it cannot satisfy all of them. The least important directive is
often an optimization objective such as "maximize sensing rate". It is restricted to
one optimization only, because the authors state, that it is difficult to optimize two
objectives with no logical link at the same time.

17

2. STATE OF THE ART

18

Chapter3Chapter3

Requirement Analysis

This chapter analyzes the requirements for job scheduling on energy-aware wireless
sensor nodes. The demands for such a system are discussed and the energy aware
algorithms presented in the previous chapter are analyzed. Finally, the concept of
performance levels are introduced.

3.1. Demands for Wireless Sensor Networks

Perpetual operation is the most important thing to ensure for a wireless sensor node.
This leads to the demand of energy neutrality (cf. 2.4 on page 11). Finding appropriate
system settings manually is difficult, because it is threatened by software errors or
wrong assumptions about energy consumption and node work load as reported in
Sect. 2.1.2 on page 6. Due to the fact that this can never totally excluded, the system
should counteract against drainage by lowering the performance dynamically. A lower
performance is much better than a short period of high performance followed by a
system failure.

Yet, dynamic performance adaption provides even more comfort: Conventionally,
the optimal measurement rate has to be found by iterative evaluation and testing. This
is not be necessary, as a rough estimation for dimensioning the hardware suffices for
the system to run at best effort. While this is also true for non-harvesting systems (cf.
Sect. 2.4.5 on page 16), it is more important for harvesting systems, because of the
high variance in harvesting potential. A set of settings that is necessary in times with

19

3. REQUIREMENT ANALYSIS

low harvesting potential in order to prevent system failure would underperform in
times with high harvesting potential.

Therefore, the second objective is to maximize the systems performance. This term
is application specific: In some deployments the sampling rate of a sensor is to be
maximized, while the transmission of data can be deferred (cf. potato field in 2.1.2
on page 6). In other deployments an immediate message transmission is essential
(cf. hill slide in 2.1.2). Another example would be different sensors with different
energy consumption and different precision. The imprecise sensor should be used
at low energy conditions, the better sensor at good energy conditions. This can be
indefinitely continued. Thus, an easy specification of the needs is to be aimed at.

The approach by Kansal et al. splits time into discharging times, where the con-
sumption is minimized, and in charging times, where the consumption is maximized
(considering energy neutrality). For solar powered systems, this leads to low perfor-
mance at night and high performance at day. As the authors of the LQ-Tracker state,
this effect is often unwanted. In contrast they ague that a low duty-cycle variance
is useful in many application settings, e.g., as additional measurements at day often
cannot compensate missing measurements at night. In particular it is problematic if
time-specific patterns are emerging (e.g., high performance at day, low performance
at night):

As an example, consider the Great Duck Island deployment with the goal of observ-
ing behavioral patterns of birds (cf. 2.1.2 on page 6): If the sensor node misses the bird
only because it has a low measurement rate, this could lead to the wrong assumption
that the animal was more often at this place at day than at night. It would be possible
to interpolate between measurement points, but a higher measurement rate at night
would be much better, even though the measurement rate at day had to be lowered.

3.2. Analysis of Hardware Requirements

The system model for the hardware used in this thesis is depicted in Fig. 3.1 on the
facing page. The hardware was developed in the Institute of Telematics at Hamburg
University of Technology and is presented in [RJT09].

In contrast to the hardware used by Kansal et al., it uses a supercapacitor rather
than a NiMH batteries as energy buffer. This has consequences: A supercapacitor

20

3.3. PERFORMANCE LEVELS FOR ENERGY-AWARE SCHEDULING

Sensor
Node

DC-DC
Converter

(η)Solar Panel

Supercapacitor

�� Figure 3.1.: System model of the used hardware.

has a much higher efficiency (99 % according to [SM11]) and only a simple, efficient
and cheap charging circuit is needed: A Zener diode to prevent overcharging and a
Schottky diode to avoid discharging over the solar panel at night suffices. Therefore,
there is no need for a special battery bypass (cf. Sect. 2.4.1 on page 12), which is the
fundament of the algorithm by Kansal et al.

Furthermore, as the solar panel is directly connected to the supercapacitor, the power
increases with the capacitor voltage at a fixed solar current. This can be assumed, since
the point where the current of the solar panel decreases is higher than the breakdown
voltage of the supercapacitor and will therefore never reached.

This implies that the more energy is already buffered, the more energy is harvested.
It introduces a nonlinearity (cf. Sect. 4.2.1 on page 28). The algorithm by Moser et
al. needs a formulation as a linear program (cf. Sect. 2.4.3 on page 15). Therefore, it
can not be used for this platform. The energy aware algorithm developed in this thesis
allows for such a nonlinearity. In fact it supports every hardware whose energy course
can be modeled by an (at least implicit solvable) differential equation.

The LQ-Tracker is not based on a system model, therefore it can be applied to this
hardware and will be compared with the algorithm developed in this thesis in Sect. 6.2
on page 46.

3.3. Performance Levels for Energy-Aware

Scheduling

Most existing algorithms are based on continuous reward functions, often directly
coupled with a given duty cycle. This is acceptable for simple systems, e.g. sampling a
single sensor, but will be less user-friendly in case of a more complex system, because

21

3. REQUIREMENT ANALYSIS

the application designer has to formulate a complicate reward function as dependencies
between different jobs arise. Those dependencies can be easily formulated in form of
performance levels:

A performance level consists of a set of settings resulting in different energy con-
sumption. Each performance level has an specified reward, therefore the performance
level with the highest reward that complies with the energy conditions is chosen.

As an example a traffic monitoring application is introduced: A sensor node repeat-
edly takes an image of a road and transmits it to a web server, so that drivers can plan
its driving route accordingly. In order to reduce the amount of transmitted images, a
sensor node counts the number of cars and only transmits the image if the difference
between the current number of cars and the one of the last transmitted image reaches
or exceeds a threshold ∆Cth. Furthermore, the system should send a small alive-packet
(consuming much less energy than sending an image) in times with low image rates,
so that the operator knows, that the system is still running.

There are three adjusting screws to adapt the systems performance to the available
energy: Rate of image acquisition, rate of alive packets and the threshold. In order to let
the operator adjust those settings easily, they are written into a table such as 3.1. Each
row defines a performance level. The higher the level is, the better is the performance
of the system, but the higher is the energy consumption.

Reward Image acquisition rate Alive packet rate ∆Cth

5 60 0 4

4 20 0 10

3 8 6 20

2 3 12 01

1 0 12 0

�� Table 3.1.: Example for a performance table, rates are in number per hour

For the prediction of future energy consumption the execution rate of each job
(image acquisition, alive packet transmission, image processing, and image transmis-
sion) has to be predicted. The rate of the first two is directly given. The rate of the
image processing is given by the rate of image acquisition. The rate of the image
transmission has to be estimated by taking the acquisition rate and the transition

1Saves the image processing at such a low acquisition rate.

22

3.3. PERFORMANCE LEVELS FOR ENERGY-AWARE SCHEDULING

probability from one number of cars to another into account. The algorithm should
choose the maximum performance level that the sensor node can meet for a defined
time interval without violation of energy neutrality.

A performance level λ can be composed of any settings that could affect energy
consumption. This includes fixed execution rates, depending execution rates, but also
other settings like radio duty cycle or transmission power, as long as the system is
able to calculate the consumed energy per hour. The series of energy levels L =

〈1, . . . , λmax〉 has a monotonically increasing energy consumption. Every given set of
performance levels can be automatically transferred into a series that achieves this: At
first the energy consumption of each level is calculated (cf. 4.3 on page 35). Then the
levels are sorted by this energy consumption. Levels with lower benefit, but higher
energy consumption than another level are deleted.

23

3. REQUIREMENT ANALYSIS

24

Chapter4Chapter4

Energy-Aware and
Prediction-Based Scheduling

This chapter describes the algorithm for energy-aware scheduling in sensor networks
developed in this thesis. It is based on discrete performance levels as introduced in the
previous chapter.

The algorithm determines the highest performance level for the next prediction
horizon that complies with the energy constraints given by energy policies. Voltage
courses resulting from different performance levels are offered to the energy policy,
which accepts or rejects it. A voltage course is given by a series of voltages at each
slot beginning:

Ṽ =
〈

Ṽc(τ0), . . . , Ṽc(τN−1)
〉

(4.1)

where τs is the starting time of slot s as presented in Sect. 2.3 on page 9. Slot s0 is
the slot at the beginning of a period. For solar powered nodes with a period of one day
s0 would start at 0:00. The voltage change within one slot is calculated as presented
in 4.2 on page 28. It is executed for each slot of the prediction horizon, while the
voltage calculated in the last slot serves as input for the calculation in the next slot.

The algorithm is executed at each slot start, as soon as a new prediction exists. If it
would be possible to predict the future (within a given horizon, e.g., a day) perfectly,
one execution per prediction horizon suffices. In order to react on prediction errors

25

4. ENERGY-AWARE AND PREDICTION-BASED SCHEDULING

(both in energy intake as in energy consumption), the algorithm decisions must be
checked and possibly revised. This is called receding horizon control.

At all times holds Vc > 0, because the DC-DC converter will cease running below a
minimum voltage Vmin and no more energy is consumed. Furthermore, the voltage can
not rise above the breakdown voltage Vmax of the capacitor, because this is avoided
by a protective circuit. The simulation takes this into account by resetting Vc to Vmax

if this voltage is exceeded.

4.1. Energy Policies

The following policies are derived from the demands presented in Sect. 5.2.3 on
page 43.

EnergyNeutrality

At first it is important to achieve perpetual operation. This implies that the supercapac-
itor never runs out of energy. Therefore the policy has to include

EnergyNeutrality(Ṽ) := ∀ τ : Ṽc(τ) > Valarm. (4.2)

Valarm should be chosen slightly higher than Vmin in order to protect from sudden
changes in energy intake. As long as this predicate holds, the system maintains energy
neutrality (cf. Sect. 2.4 on page 11). It is depicted in Fig. 4.1.

ReachTop

In order to utilize the full voltage range (resulting in better energy efficiency (cf.
Sect. 4.2.1 on page 28), a second policy pictured in Fig. 4.2 on the facing page is
introduced that requests a full energy buffer within the prediction horizon:

ReachTop(Ṽ) := ∃ τ : Ṽc(τ) = Vmax ∧ EnergyNeutrality(Ṽ) (4.3)

26

4.1. ENERGY POLICIES

0

2

4

6

8

[mA]

16 20 0 4 8 12 16 20 0 4

1

1.5

2

[h]

[V]

measured voltage predicted voltage
measured solar current predicted solar current

�� Figure 4.1.: The EnergyNeutrality policy requests a non empty energy buffer.

0

2

4

6

8

[mA]

16 20 0 4 8 12 16 20 0 4

1

1.5

2

2.5

[h]

[V]

measured voltage predicted voltage
measured solar current predicted solar current

�� Figure 4.2.: The ReachTop policy requests the energy to be full once within the
prediction period, while ensuring energy neutrality.

27

4. ENERGY-AWARE AND PREDICTION-BASED SCHEDULING

Equalize

A third policy does not depend on a static goal, but rather tries to utilize the full energy
consumed in the upcoming prediction horizon by requesting the same voltage at the
end of the prediction horizon as depicted in Fig. 4.3.

Equalize(Ṽ , Vc, s) := Vc = Ṽc(τs+N) ∧ EnergyNeutrality(Ṽ) (4.4)

0

2

4

6

8

[mA]

16 20 0 4 8 12 16 20 0 4

1

1.5

2

[h]

[V]

measured voltage predicted voltage
measured solar current predicted solar current

�� Figure 4.3.: The Equalize policy requests the voltage to be equal at the end of the
prediction horizon, while ensuring energy neutrality.

4.2. Energy-Progress Simulation

For simulating the voltage course at a given performance level, a differential equation
is derived. It will be interpreted in context of prediction and solved.

4.2.1. System Model

The hardware consists of a solar panel directly connected to an electric double-layer
capacitor which powers the microcontroller with a DC-DC converter (cf. Sect. 3.2 on
page 20). A simplified circuit is provided in Fig. 4.4.

28

4.2. ENERGY-PROGRESS S IMULATION

Ih(t)

C

Ic(t)

Vc(t)

Iconv(t) DC-DC

Converter

(η)

In(t)

Vn

�� Figure 4.4.: Energy Supply Circuit

At time t, a current Ih(t) ≥ 0 is harvested. At the same time the microcontroller
consumes the current In(t) ≥ 0 at a constant output voltage Vn which is provided
by the DC-DC converter. The current into the capacitor Ic(t) is given by Kirchhoff’s
current law as

Ic(t) = Ih(t)− Iconv(t). (4.5)

Note that Ih(t) is negative, if Iconv(t) exceeds Ih(t). The incoming power of a DC-DC
converter equals the outgoing power reduced by the efficiency η:

Iconv(t) ·Vc(t) · η = In(t) ·Vn = Pn(t) (4.6)

Inserting (4.6) into (4.5) yields

Ic(t) = Ih(t)−
Pn(t)

Vc(t) · η
. (4.7)

The increase of the energy stored in the capacitor equals the power at the capacitor:

dEc(t)
dt

= Ic(t) ·Vc(t)

(4.7)
= Ih(t) ·Vc(t)−

Pn(t)
η

(4.8)

29

4. ENERGY-AWARE AND PREDICTION-BASED SCHEDULING

This confirms the proposition that the harvested energy increases with rising state of
charge (cf. Sect. 3.2 on page 20). The energy stored in a capacitor is directly related to
the capacitor voltage by

1
2
· C ·Vc(t)2 = Ec(t) (4.9)

Differentiation yields the differential equation for the voltage at the capacitor:

C ·Vc(t) ·
dVc(t)

dt
=

dEc(t)
dt

(4.10)

dVc(t)
dt

=
1
C
·
(

Ih(t)−
Pn(t)

η ·Vc(t)

)
(4.11)

This equation is the basis for forecasting the voltage course (4.1) on page 25. It’s
solution will be subsequently developed.

4.2.2. Adaptions for Simulation

Due to the nature of common, state-of-the-art prediction schemes for energy intake,
the equation can be solved on a per-slot basis. Recall from 2.3 on page 9 that the
prediction of Ĩh(t) is constant within a slot.

Ĩh(t) = const. τs ≤ t < τs + ls (4.12)

Node power Pn(t) varies between a few µA in times while the microcontroller is in
sleep state up to several mA in times of activity (e.g., calculation, radio). The times of
high power are short compared to the duration of the sleep states while being equally
distributed in time. In order to provide a feasible simulation, Pn(t) is assumed to be
constant during a slot.

In times of Ih(t) = 0 this induces no error because from (4.8) it follows that

dEc(t)
dt

= −Pn(t)
η

(4.13)

Ec(τs+1) = Ec(τs)−
∫ τs+1

τs

Pn(u)
η

du. (4.14)

30

4.2. ENERGY-PROGRESS S IMULATION

Thus the stored energy at time t only depends on the integral of the power and not
on its temporal distribution. This does not hold if Ih(t) 6= 0, as the harvested energy
is dependent on the voltage of the supercapacitor (cf. (4.8)).

0 20 40 60 80 100 120 140 160 180 200 220

50

100

150

200 Ih = 0 mA Ih = 16 mA

[min]

[Ws]

0 0.02 0.04 0.06 0.08 0.1
0

50

100

[min]

[mW]

0.00 0.02 0.04 0.06 0.08 0.10
0

50

100

[min]

[mW]

110 110.02 110.04 110.06 110.08 110.1

55.6

55.7

55.8

55.9

[min]

[Ws]

228.00 228.02 228.04 228.06 228.08 228.10

119.8

119.9

120.0

120.1

[min]

[Ws]

�� Figure 4.5.: Comparison of assumed (dashed) and real energy course (solid) of the
energy buffer. In the upper plot, they are not distinguishable. The lower plots show
magnifications of the upper plot and illustrate different errors at different harvesting
currents. The dotted line represents the consumed power.

In Fig. 4.5 a sample energy course of two hours with Ih(t) = 0 mA followed by
two hours with Ih(t) = 16 mA is shown. The simulation (dashed line) with constant
Pn(t) and the energy course with variable energy consumption (solid line) both show
the same course on the upper figure. Only with higher resolution, a difference can
be seen. The real energy course is staircase-shaped, while the simulation generates a
steady course. At Ih(t) = 0 mA, both courses meet once a step, indicating no error
that builds up over time. At Ih(t) = 16 mA, an error can be detected, because in
reality, the energy drops at each execution cycle, while in the remaining time only
the harvester influences the supercapacitor. Though the same energy is drawn by the
microcontroller, the buffered energy (and therefore the voltage) is lower most of the
time within a cycle. This results in lower power by the harvester. The error builds up
over time, but the steps are small enough (≈ 0.04 W s) to produce a absolute error

31

4. ENERGY-AWARE AND PREDICTION-BASED SCHEDULING

smaller 0.1 W s withing two hours, corresponding to an absolute voltage error as small
as 10−3 V. In this application such an error is non significant, because achievable
voltage measurement resolution is in the same order of magnitude (for a 10 bit ADC).

4.2.3. Solution of Differential Equation

With the made assumptions introduced in the last section, (4.11) is a first order
nonlinear ordinary differential equation:

dy
dt

= a− b
y

with y(t) = Ṽc(t), a =
Ĩh
C

, b =
Pn

η · C
(4.15)

The coefficients a and b are constant (cf. previous section) and positive, because
otherwise the sensor node is a consumer and the harvester only produces energy.
Furthermore, y > 0 as the voltage will not drop below Valarm. Given the current
voltage y(τs) = Vc(τs), the solution of the differential equation at time τs+1 can be
divided into 3 cases:

Equilibrium operation

In this case the energy consumption and energy intake are balanced:

Ĩh
Vc(τs)

=
Pn

η
⇒ a =

b
y

(4.16)

The harvested energy is directly used and the energy of the capacitor is kept constant.
From (4.15) it follows that

⇒ dy
dt

= 0 ⇒ Vc(τs+1) = Vc(τs) = const. (4.17)

Discharging only

In times where the harvester produces no energy (Ĩh = 0 ⇒ a = 0), (4.15) boils
down to

dy
dt

= − b
y

(4.18)

32

4.2. ENERGY-PROGRESS S IMULATION

This can be solved by separation of variables:

y · dy
dt

= −b (4.19)∫ τs+1

τs
s · ds

du
du =

∫ τs+1

τs
−b du∫ y(τs+1)

y(τs)
s ds =

∫ τs+1

τs
−b du

1
2

y(τs+1)
2 − 1

2
y(τs)

2 = −b · (τs+1 − τs)

y(τs+1) =
√

y2
0 − 2bls

Back substitution yields

Vc(τs+1) =

√
Vc(τs)2 − 2

Pnls
ηC

. (4.20)

Mixed operation

The last case contains all other physical possibilities, in which the harvesting device
provides power not equal to the consumed power. In fact it contains two separate
cases: If energy intake is greater than energy consumption, the supercapacitor will
monotonously charge. If more energy is consumed than provided by the harvester, the
amount of buffered energy monotonously decreases. Both cases are strictly separated,
as they will diverge from the equilibrium point with increasing speed. Therefore, it
can be assumed, that each occurrence of a− b

y will have the same sign at a given a and
b (thus ay− b, too, as y > 0). Furthermore, it is assumed, that a ≥ 0 and a− b

y 6= 0,
because these cases are handled above. The solution can be found by separation of
variables:

dy
dt

= a− b
y

1 =
1

a− b
y

· dy
dt∫ τs+1

τs
1 du =

∫ y(τs+1)

y(τs)

1
a− b

s

ds

(4.21)

33

4. ENERGY-AWARE AND PREDICTION-BASED SCHEDULING

τs+1 − τs =
∫ y(τs+1)

y(τs)

s
as− b

ds =
∫ y(τs+1)

y(τs)

as− b + b
a · (as− b)

ds

ls =
∫ y(τs+1)

y(τs)

as− b
a · (as− b)

+
b

a · (as− b)
ds

ls =
∫ y(τs+1)

y(τs)

1
a

ds +
∫ y(τs+1)

y(τs)

b
a · (as− b)

ds

ls =
y(τs+1)

a
− y(τs)

a
+

b
a2

∫ y(τs+1)

y(τs)

a
as− b

ds

a · ls = y(τs+1)− y(τs) +
b
a
· ln
(

ay(τs+1)− b
ay(τs)− b

)

This implicit equation cannot be solved explicitly for y(τs+1). It is necessary to use a
numerical approximation, such as Newton’s method:

yn+1 = yn +
f (yn)

f ′(yn)
(4.22)

with f (yn) = yn +
b
a
· ln
∣∣∣∣ ayn − b

ay0 − b

∣∣∣∣− y0 − a · ls

and y0 = y(τs)

⇒ yn+1 = yn +

yn +
b
a · ln

(
yn− b

a
y0− b

a

)
− y0 − a · ls

1 + b
a

(
yn − b

a

)−1 (4.23)

As starting value y0 = y(τs) = Vc(τs) was chosen, because it serves as an rough
approximation to the resulting voltage as high voltage changes are rare. The terms
ψ := b

a = Pn
η· Ĩh

and φ := y(τs) + a · ls = Vc(τs) +
Ĩhls
C are constant during the

iterations, so they can be precalculated.

yn+1 = yn +
yn + ψ · ln

∣∣∣ yn−ψ
y0−ψ

∣∣∣− φ

1 + ψ (yn − ψ)−1 (4.24)

This calculation will be executed until the target accuracy ε is reached:

ε > |yn+1 − yn| . (4.25)

34

4.3. ENERGY CONSUMPTION

It is chosen as ε = 0.01 V, resulting from the resolution of the voltage measurement.
This results in approximately 4 calculation steps.

For the sake of completeness, back substitution according to (4.15) yields

Vcn+1 = Vcn +

Vcn +
Pn

η· Ĩh
· ln
∣∣∣∣∣Vcn− Pn

η· Ĩh
Vc0− Pn

η· Ĩh

∣∣∣∣∣−Vc0 − Ĩhls
C

1 + Pn
Ĩh·η
·
(

Vcn − Pn
η· Ĩh

)−1 (4.26)

4.3. Energy Consumption

The mean power in level λ can be calculated as T

Pn = ∑
j∈J

rλ,j · Ej. (4.27)

with J being the set of jobs, Ej being the average energy consumed by a job for a
single execution and rλ,j being the execution rate of job j in level λ. The rates build
up the matrix R with Λ being the set of levels:

R = (rλ,j), R ∈N|Λ|×|J | (4.28)

Some jobs like communication have a small jitter in the energy consumption. For
example it is dependent on channel load or link quality. This is taken into account by
filtering the measured value Ej,measured by a moving average

Ej ← α · Ej + (1− α) · Ej,measured α ∈ [0, 1]. (4.29)

α is chosen in such way, that only long-term variations (e.g., environmental changes)
affect the result. Due to the fact, that the jitter is small most of the time, α = 0.5 is a
fair choice.

4.4. Algorithm

By means of the simulation, the optimal level of the set of levels Λ is found by binary
search as described in Alg. 1 on the following page. The compliance with the policy

35

4. ENERGY-AWARE AND PREDICTION-BASED SCHEDULING

(cf. 4.1 on page 26) is used as search criterion. If no valid level can be found, the
lowest level is chosen, implying that this level must describe a level in which it is
unlikely to drain the supercapacitor until better energy conditions are experienced. For
solar harvesting, operation for a few days should be guaranteed.

Data: Set of levels Λ, Series of slot lengths L and predictions of energy intake Ĩh, current capac-
itor voltage Vc, matrix of execution rates R, current time tcurr and slot scurr, vector of en-

ergy consumptions EJ =
(

E0, . . . , E|J |−1

)T

Result: Optimal level for the current prediction horizon
λlower ← 1
λupper ← λmax
while λlower < λupper do

λ←
⌊

λlower + λupper + 1
2

⌋
s← scurr
τ← tcurr
while τ < tcurr + T ∧ Vc >= Valarm do

s← (s + 1) mod N
τ← τ+ L[s]
Pn ← ∑j∈J rλ,j · Ej

if Ĩhτs = 0 then
Vc ←

√
Vc(τs)2 − 2 Pn ls

ηC
else

Vc(τs)← Vc

ψ← Pn
η· Ĩh [s]

φ← Vc(τs) +
Ĩh [s]L[s]

C
repeat

Vc ,old ← Vc

Vc ← Vc +
Vc+ψ·ln

∣∣∣ Vc−ψ
Vc(τs)−ψ

∣∣∣−φ

1+ψ(yn−ψ)−1

until |Vc −Vc ,old| < ε

if Vc > Vmax then
Vc ← Vmax

Ṽ [s]← Vc

if Policy(Ṽ , Vc, scurr) satisfied then
λlower ← λ

else
λupper ← λ− 1

return λupper

�� Algorithm 1: Algorithm for finding the optimal performance level

36

Chapter5Chapter5

Software Design and
Implementation

The software is implemented in nesC for the TinyOS platform. The use of TinyOS
arises from its support for the used IRIS platform and the availability of needed
profound know-how and elaborate software modules for this system.

5.1. Design Considerations

The software consists of the following components: The energy manager for imple-
menting the algorithm presented in Chap. 4 on page 25. It controls a set of jobs for
measurement and communication. They are executed by the energy-aware scheduler.
They make use of the following modules already developed in the Institute of Telemat-
ics at Hamburg University of Technology: An energy tracker for measurement of the
consumed energy according to Sect. 2.2.2 on page 7, a solar predictor for partitioning
the time into slots and prediction of future solar current according to Sect. 2.3 on
page 9 and a hardware abstraction layer for communication with the solar harvesting
board used for measuring solar current, capacitor voltage, light, and temperature.

Figure 5.1 on the next page illustrates their interaction.

37

5. SOFTWARE DESIGN AND IMPLEMENTATION

Energy Aware
Scheduler

Energy Tracker

Energy Manager

Solar Predictor

Hardware Abstraction Layer

Jobs

Performance Levels

uses

asks for energy consumptions

controls

executes

ask for execution

use
sensors

reads
solar
current

uses

reads
capacitor

voltage

requests

�� Figure 5.1.: Interaction between modules.

5.1.1. Job Concept

A job is an abstraction of an activity, such as sampling a sensor value or sending a
radio packet. It is one file of source code describing the implementation of the activity.
Jobs are not preemptive; a new job will be delayed until the running job is done. Of
course it is possible for the microprocessor to interrupt the execution of a job for
interrupt handlers for timers or other hardware. This is similar to the task concept in
TinyOS, but at a higher level: A task is a sequence of commands that is scheduled as
soon as no other task is executed. It is finished at the end of the command sequence,
while jobs can include split phases: In a split phase a sequence of commands ends and
the job waits for an interrupt (e.g., a finished sensor reading). While being in a split
phase, the processor can idle, but no other job can start. In fact, a job is implemented as
a composition of tasks and interrupt handlers. At first a task is called by the scheduler.

38

5.1. DESIGN CONSIDERATIONS

It can start one or more split phases, that will return later. The scheduler assumes the
job runs until it signals the done event.

There are many kinds of jobs, some are called at a fixed rate, some (so called
consumers) depend on the execution of another job (producers) or have to be scheduled
before a given deadline.

Jobs are non-preemptive, to allow for an easy measurement of the consumed energy:
This energy is measured by means of the energy tracker, which permanently sums up
the consumed energy of all hardware components. This approach was chosen, because
it provides a sufficient accuracy and does not depend on hardware support (cf. 2.2.4
on page 8).

The accumulated energy between starting and stopping the job execution is equiva-
lent to the energy drawn by a job as long as no other energy-consuming job runs at
the same time. This introduces a small delay if two jobs want to be executed at the
same time, but it is negligible in the majority of cases, because job durations are small
compared to the times where no job is executed. For example a job sending a packet
normally takes a few milliseconds for execution. Sampling the temperature is less than
one millisecond. In contrast, the execution cycle lasts from a few seconds up to hours.

5.1.2. Energy Aware Scheduler

The scheduler is responsible for executing jobs at the desired times given by the
current performance level. A performance level consists of a set of settings stored in
a central module. It is defined by the user as a static array of structs. For the traffic
monitoring example presented in Sect. 3.3 on page 21 an excerpt of the implemented
performance levels is

typedef struct {

uint16_t imageAquisitionRate; // rates are given in 1/hour

uint16_t alivePacketRate;

uint8_t carDifferenceThereshold;

} Level;

Level levels[5];

....

levels[1].imageAquisitionRate = 3;

levels[1].alivePacketRate = 12;

levels[1].carDifferenceThreshold = 0;

levels[0].imageAquisitionRate = 0;

39

5. SOFTWARE DESIGN AND IMPLEMENTATION

levels[0].alivePacketRate = 12;

levels[0].carDifferenceThreshold = 0;

It is necessary to map such a set of settings to an execution plan and to the predicted
energy consumption. The possibility of dependencies between jobs (producer and
consumer) further complicates the situation. Different design considerations were
taken into account for solving this problem:

External job control ("wise scheduler/dumb jobs") would mean that applying
these settings to each job is done by the scheduler. The jobs are separated into
categories, e.g., periodic jobs, producer or consumer, so that the scheduler knows how
to handle each job in each level. The predicted energy can be calculated efficiently
because all data and all calculation resides in one place. The drawback is that the
scheduler must be extended each time a new job category is introduced or a special
energy prediction is needed, e.g., the calculation of the estimated image transmission
rate based on the threshold (cf. Sect. 3.3 on page 21 is to be implemented in the
scheduler. Moreover, it is necessary to maintain a mapping between settings and jobs.

Internal job control ("dumb scheduler/wise jobs") would mean that each job
itself is responsible for maintaining its own execution plan. After an execution the
job itself decides if and when it wants to be executed the next time. This point in
time is sent to the scheduler. One job can access the whole set of settings and can
pick the settings important for itself. This avoids the need of a mapping and each
job has the possibility to calculate its own energy consumption, because it can rely
on the settings for other jobs, too. Hence, it is possible that the same calculation is
executed by two jobs, because both rely on the same setting. This and the fact that
more data than needed is shared, results in slightly worse performance. In fact, this
leads to a negligible overhead of four additional integer divisions at each slot end in
the implementation.

Internal job control with proxies can be used to avoid another drawback of the
internal job control: The same functionality (e.g., reposting a periodic job) must be
implemented in multiple jobs making it prone to errors and produces hard to maintain
source code. A job proxy acts as a job toward the scheduler and as a scheduler toward

40

5.2. IMPLEMENTATION

External Internal Internal with proxies

flexibility

maintainability

performance

�� Table 5.1.: Different design considerations for implementing the job control

the assigned job. For example, a module provides the reposting functionality for a job
which itself only sets the desired execution rate. The application designer can choose
if a job fits to an existing proxy, if he should write a new proxy, or if the job is such a
special job that he should implement all functionality in the job itself.

After consideration of the advantages and disadvantages as presented in Table 5.1,
the internal job control with proxies was chosen for implementation.

5.2. Implementation

The implementation is written for TinyOS 2.1 based on nesC 4.5. The developed
software can run in two environments: On real hardware as well as in a simulator
(TOSSIM). The hardware used is a IRIS sensor node from Crossbow Technology
equipped with an ATmega1281 microcontroller and an AT86RF230 radio chip.

The total memory consumption of the system (excluding the operating system) is
31800 bytes of ROM and 1800 bytes of RAM, including some modules that would
not be necessary for a real-world application (e.g., test code). The implementation
embraces 4000 lines of code.

5.2.1. Energy Manager

The energy manager is responsible for finding the optimal performance level for the
next slot (cf. Chap. 4 on page 25). It is executed at each start of a slot.

The energy manager requests the energy consumption and execution rates from each
job. Alg. 1 on page 36 is executed and the determined level is distributed to each job.
The calculation is implemented in floating point arithmetics. Fixed point arithmetic
would be faster, but for the price of much higher implementation effort. One execution
of the algorithm takes 88 ms and draws 1666 µW s. The averaged power over the day

41

5. SOFTWARE DESIGN AND IMPLEMENTATION

is 0.23 µW, since it is executed only at each slots end. For comparison: Sending one
radio packet each minute draws an average power of 6.75 µW.

5.2.2. Simulation

In addition to running on real hardware, the software execution can be simulated on
a desktop computer. This way it is possible to run extended periods, e.g., a whole
month, within minutes giving the opportunity to test the software and find appropriate
performance levels before deployment with real-world harvesting traces. Harvesting
device and supercapacitor can be dimensioned this way, too.

Due to the fact that the desktop computer has no hardware interface to a harvesting
device and that the software should run faster than on hardware, the hardware and
the energy consumption must be simulated, too. The current capacitor voltage is
recalculated perpetually. The power needed for each job was measured before by
the software running on real hardware. Data with sampled solar readings serves as
incoming energy. The calculation of the voltage is based on the same differential
equation (4.11) on page 30, but is calculated in a more fine-grained manner and waives
the simplifications in 4.2.2 on page 30, especially the consumed power is not assumed
to be constant during one slot.

Each time a job starts or stops, the voltage course since the last event is calculated
stepwise by means of the Runge-Kutta method. It was preferred to Newton’s method
used in 4.2.3 on page 32, because interim values needed for later analysis of the
precise voltage course are already calculated. Furthermore, it serves as a validation for
the developed algorithm (cf. Chap. 4 on page 25). Note that the developed algorithm
only determines one value per slot (minutes to hours), while the Runge-Kutta method
provides a new value each millisecond or less (and is correspondingly much slower).

5.2.3. Sample Jobs

Several sample jobs serve as a rule for implementing a real-world application. They
include some jobs for measuring temperature, light, capacitor voltage and solar current.
Furthermore, some jobs for transmitting the current systems state and measurement
values to a base station are implemented. Due to the lack of appropriate camera
hardware, an imaging job is simulated by playing Conway’s Game of Life. The

42

5.2. IMPLEMENTATION

associated transmission job has the possibility for deferred message sending (cf.).
Therefore, it maintains a message queue and sends a message at the point in time with
highest capacitor voltage within a given deadline or at a full queue.

43

5. SOFTWARE DESIGN AND IMPLEMENTATION

44

Chapter6Chapter6

Evaluation

In this chapter, the developed algorithm is evaluated and compared to the LQ-Tracker
(cf. Sect. 2.4.2 on page 14). The simulation covers d = 40 days of real-world solar
current measured at the Institute of Telematics at Hamburg University of Technology.
The performance levels were chosen with a linear increasing power consumption
ranging from 12.8 µW to 4800 µW. For better comparability the reward was chosen
as proportional to the energy consumption. The converter efficiency is η = 85 %.
The voltage of the capacitor ranges from Vmin = 0.5 V to Vmax = 2.71 V. The alarm
threshold was chosen as 0.9 V.

Deferred message sending (cf. Sect. 5.2.3 on page 42) was not further reviewed,
because the energy intake permits a high sampling and transmission rate of up to once
a second. This quickly leads to a full message queue, even in times with poor energy
conditions and a queue with ineligible size for the used hardware.

6.1. Metrics

The following metrics yield from Sect. 5.2.3 on page 43. Most important the voltage
must not drop below Vmin = 0.5 V. Otherwise the sensor node would stop to work.

45

6. EVALUATION

The mean level of day x starting at tx relative to the maximum level λmax is
calculated as

λd(x) =
1
T

∫ tx+T

tx

λ(u)
λmax

du (6.1)

The standard deviation within a day x is

σd(x) =

√
1
T

∫ tx+T

tx

(
λ(u)
λmax

− λd(x)
)2

du (6.2)

The mean level over all days

λ =
1
d

d

∑
x=1

λd(x) (6.3)

should be as high as possible, while the average standard deviation

σ =
1
d

d

∑
x=1

σd(x) (6.4)

should be as low as possible, in order to prevent time specific patterns (cf. Sect. 5.2.3
on page 43). They are correlated, as can be seen in Fig. 6.1 on the facing page. It shows
the above values of the results below (and some more). A high standard deviation
implies better adaption to the actual situation, but leads to a less smooth operation.

6.2. LQ-Tracker

The LQ-Tracker is based on a continuous duty-cycle (and therefore energy consump-
tion). This is not possible for a real-world application, as it can only adapted in
discrete steps, while the resolution depends on the hardware. As a approximation, 200
performance levels were chosen.

Figure 6.2 on the next page shows the result of the algorithm without smoothing
(α = β = 1), V∗c = 1.5 V and C = 100 F. A high average level of 0.528 is reached,
but the level is at λmax most of the time when Vc > V∗c and at λmax when Vc < V∗c ,
leading to a high standard deviation of 0.344. The algorithm tries to force the voltage

46

6.2. LQ-TRACKER

0 0.1 0.2 0.3 0.4 0.5 0.6
0.0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

λ

σ

�� Figure 6.1.: Scatter plot showing correlation of standard deviation and mean value

0.5

1

1.5

2

2.5

[V]

0

5

10

[mA]

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

0.2

0.4

0.6

0.8

1

day

λ
λmax

�� Figure 6.2.: LQ-Tracker with no smoothing. The upper plot shows the voltage at
the capacitor (solid) and the harvesting current (dotted). The lower plot shows the
chosen level relative to the maximum level.

47

6. EVALUATION

to a static goal, even though it is slightly softened by use of the control law. A static
voltage is a improper assumption, as the harvester shows a high variance and therefore,
the voltage course has to vary a lot during a day in order to reach a low variance in the
level.

0.5

1

1.5

2

2.5

[V]

0

5

10

[mA]

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

0.2

0.4

0.6

0.8

1

day

λ
λmax

�� Figure 6.3.: LQ-Tracker with α = 0.001 and β = 0.5

Therefore, the authors of [VGB07] introduced an exponentially-weighted moving
average. With α = 0.001 and β = 0.5, Fig. 6.3 occurs. It achieves a low standard
deviation of 0.099 with mean 0.49, but takes quite long until it adapts to new energy
conditions and most important: It results in a system failure at day 18. It was not
possible to find appropriate parameters, that ensure energy neutrality as well as a
smooth operation. Some exemplary results are depicted in Fig. 6.4 on the next page.

From this concludes, that the LQ-Tracker is not applicable for a system with a small
energy buffer, e.g., a supercapacitor. A much bigger energy buffer would be needed in
order to compensate the low adaption ability of the LQ-Tracker. Even with a bigger
energy buffer, appropriate parameters have to be found.

6.3. Policy Assessment

In the following, the simulation results for the algorithm developed in this thesis are
presented. The simulation was executed with C = 100 F, an adaptive predictor with
α = 0.8 and 20 performance levels. These parameters are reviewed in Sect. 6.4 on
page 52.

48

6.3. POLICY ASSESSMENT

0.5

1

1.5

2

2.5

[V]

0

5

10

[mA]

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

0.2

0.4

0.6

0.8

1

day

λ
λmax

(a) α = 0.001, β = 0.5 and V∗c = 2.0 V

0.5

1

1.5

2

2.5

[V]

0

5

10

[mA]

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

0.2

0.4

0.6

0.8

1

day

λ
λmax

(b) α = 0.0008, β = 0.5 and V∗c = 1.5 V

0.5

1

1.5

2

2.5

[V]

0

5

10

[mA]

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

0.2

0.4

0.6

0.8

1

day

λ
λmax

(c) α = 0.004, β = 0.5 and V∗c = 1.5 V

�� Figure 6.4.: Behavior of LQ-Tracker at various parameters. None leads to a sustain-
able as well as smooth operation.

49

6. EVALUATION

EnergyNeutrality

Figure 6.5 shows the simulation of the EnergyNeutrality policy. As requested by
the policy, the voltage course returns to the minimum voltage at each day where
this is possible. It tries to consume as much energy instantly, thus resulting in small
time-specific patterns, while reaching λ = 0.473 and σ = 0.148.

0.5

1

1.5

2

2.5

[V]

0

5

10

[mA]

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

0.2

0.4

0.6

0.8

1

day

λ
λmax

�� Figure 6.5.: Simulation with EnergyNeutrality

ReachTop

The second policy tries to reach the maximum voltage each day. Figure 6.6 on the
facing page results from the simulation of this policy with C = 100 F. The resulting
mean level is 0.490 and the standard deviation is 0.134. As soon as the supercapacitor
is full, the performance level is inflated. This leads to a higher standard deviation, but
is fine, because otherwise the energy would get wasted.

Equalize

The last policy aims to consume the same energy that will be harvested within the next
prediction horizon, as it tries to reach the same voltage at the end of the prediction
horizon. This is depicted in Fig. 6.7 on the next page. It does not take the preceding
course into account as it does only rely on future energy intake, producing an mean
value of 0.460 and a standard deviation of 0.118. It has the smallest standard deviation
of all policies at the cost of the smallest mean value.

50

6.3. POLICY ASSESSMENT

0.5

1

1.5

2

2.5

[V]

0

5

10

[mA]

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

0.2

0.4

0.6

0.8

1

day

λ
λmax

�� Figure 6.6.: Simulation with ReachTop

0.5

1

1.5

2

2.5

[V]

0

5

10

[mA]

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

0.2

0.4

0.6

0.8

1

day

λ
λmax

�� Figure 6.7.: Simulation with Equalize

Comparison

Figure 6.8 on the following page compares the different policies and they are related
to the LQ-Tracker. It shows the cumulated hourly performance level. This is equal
to the gained reward, because it is proportional to the level. It can be seen, that the
LQ-Tracker results in a low reward, even before it runs out of energy. Equalize has a
high reward in the first days, but it can not keep up this good start. ReachTop shows
the best reward over time, because it stays at a high voltage most of the time, resulting
in better energy efficiency.

51

6. EVALUATION

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

100

200

300

400

500

day

cu
m

ul
at

ed
ho

ur
ly

λ
λ

m
ax

ReachTop
EnergyNeutrality

Equalize
LQ-Tracker

�� Figure 6.8.: Cumulated hourly performance level for each policy and the LQ-Tracker

6.4. Influence of System Model Parameters

The result is influenced by various parameters. They are presented and analyzed in the
following. The used policy was ReachTop , because it has turned out to have the best
performance for these conditions.

6.4.1. Prediction

The prediction has a great impact on the result of the algorithms. Table 6.1 compares
the energy intake prediction with fixed and variable slot lengths for ReachTop with
C = 100 F.

Adaptive Prediction Static Prediction

α 0.6 0.8 0.95 0.6 0.8 0.95

λ 0.484 0.490 0.499 0.485 0.476 0.447

σ 0.148 0.134 0.120 0.132 0.134 0.141

�� Table 6.1.: Results for prediction techniques with ReachTop and C = 100 F

52

6.4. INFLUENCE OF SYSTEM MODEL PARAMETERS

It can be seen, that the adaptive prediction results into higher levels, while main-
taining a low standard deviation. The results from the fact, that the prediction error is
smaller, therefore a accurate level is chosen more often.

6.4.2. Number of Performance Levels

The number of given performance levels affects how exactly the system can adapt to
the current energy conditions. Table 6.2 shows the resulting mean values and average
standard deviations for different number of levels. It can be seen that the relative mean
level rises with the number of levels, but also the standard deviation rises. Therefore,
the concrete number of levels is application specific, as it is a trade-off between a high
mean level and a low standard deviation. It is an adequate procedure to start with a
small number of levels, run the simulation and increment the number of levels, if the
result is not acceptable.

λmax 5 10 20 40

λ 0.482 0.485 0.490 0.492

σ 0.112 0.124 0.134 0.142

�� Table 6.2.: Results for different λmax with ReachTop and C = 100 F

6.4.3. Capacity of Supercapacitor

The capacity of the supercapacitor shows a similar behavior, as can be seen in Table 6.3.
It has an impact on the energy that can buffered. However, in this case a higher capacity
implies higher costs.

C 25 F 50 F 100 F 150 F

λ 0.222 0.359 0.490 0.555

σ 0.054 0.094 0.134 0.134

�� Table 6.3.: Results for different capacities with ReachTop and λmax = 20

53

6. EVALUATION

6.5. Real-World Deployment

The applicability of the implemented system was tested in a real-world deployment.
A preliminary software was used. Therefore, the above results can not be directly
compared to the real-world application. Due to the fact, that a system failure would not
be acceptable, because of the short time span to test the system, a high energy reserve
of Valarm = 1.6 V was chosen. The used policy was Equalize while the size of the
supercapacitor was 50 F and the number of performance levels was 10. In Fig. 6.9 the
result from 8 days of measurement are presented, showing the principle applicability
of the algorithm.

0.5

1

1.5

2

2.5

[V]

0

5

10

[mA]

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

day

λ
λmax

�� Figure 6.9.: 8 days of real-world deployment

6.6. Limitations

This chapter demonstrates the applicability to the target hardware in reaching energy
neutrality and adequate low standard deviation. However, it is not possible to derive
general guidelines for parameter justification, because a trade-off between accurate
adaptation and smooth operation must be made. Furthermore, a good prediction of
future energy is needed. Therefore, the algorithm shows a problematic behavior at
successive days having a high deviation in energy intake, as the system will likely
consume too much or too few energy.

54

Chapter7Chapter7

Conclusion

Wireless sensor networks are widely-used for non-intrusive data-gathering. The ad-
vantages are the tiny size of the sensor nodes, an easy deployment and low costs.
Yet, the lifetime of a sensor network depends on the available energy. Purely battery
driven sensor nodes will refuse to run as soon as the battery is empty. Therefore, many
research has been carried out in order to prolong a sensor node’s lifetime. Continuing
on this, a further approach is the use of energy harvesting devices, that harvests energy
from the environment. This allows for sustainable operation.

However, the size of the harvesting device should comply with the tiny size of
the sensor nodes. Therefore, the sensor nodes should be equipped with equally tiny
harvesting devices. Since most harvesting sources, e.g., the sun, yield a varying,
unsteady energy intake, the missing energy in times of poor harvesting conditions
should be balanced by adapting the systems performance dynamically. Hence, online
energy management, i.e., job scheduling and duty cycle adaption, is mandatory for
achieving perpetual and depletion-safe operation.

In this thesis a new scheduling approach was developed and implemented in order
to reach this goal for a given hardware platform. Therefore, existing state-of-the-art al-
gorithms were analyzed at first. From existing real-world sensor network deployments,
demands were derived and formulated. A user-friendly specification of the system
designer’s demands is achieved by the introduction of discrete performance levels.
Many existing algorithms show a lack of a user-friendly specification of demands,

55

7. CONCLUSION

but rather depend on a single linear reward function. This is appropriate for simple
applications, but can not be applied to more complex user demands.

These demands and the existing algorithms were compared showing some deviations
that lowers the adaptability to other hardware or user demands. This is especially
important, because the hardware used in this thesis includes a nonlinearity, because
the harvested energy depends on the current energy stored in a supercapacitor. The
algorithm can handle such a nonlinearity making it applicable to a wide range of
hardware, since it depends on a mathematical model of the target platform as a
differential equation. The algorithm solves this differential equation online with
sufficient accuracy, while taking the low computational power of a sensor node into
account.

The algorithm is dependent on the prediction of future energy intake exploiting the
varying nature of the environment. Based on these predictions, the voltage course of
the energy buffer is simulated and different performance levels are investigated for
their compatibility with defined energy policies, such as a nonempty energy buffer.

The second part of this thesis addresses the implementation of a complete energy-
aware framework that can run on state-of-the-art sensor nodes and was tested in a
real-world deployment. Besides the use on sensor nodes, the framework can simulate
the behavior of the system offline. This was used to evaluate the developed algorithm,
as well as it can serve as a tool for a system designer in order to find appropriate
settings for his deployment.

The algorithm developed in this thesis was compared to the LQ-Tracker, a state-of-
the-art scheduling approach. It was shown, that the LQ-Tracker is not applicable on a
system with a small energy buffer. The evaluation demonstrates, that the developed
algorithm can adapt the system performance to the energy conditions quite well. One
direction of future research would be to enhance the algorithm for gaining an even
smoother operation, e.g., by avoiding recalculation if the predicted and the real voltage
course do not differ considerabily. Furthermore, the scheduling of infrequent, but
energy-consuming operations, e.g., calibration tasks, should be considered as their
energy efficiency varies with the time of execution.

The framework developed in this thesis aims at application in single-hop networks
with direct radio connection to a base station. Future work has to be done in order to
take energy conditions of a multi-hop network into account: Decisions concerning
energy consumption may affect other sensor nodes. Therefore, these decisions should

56

be made in a network-wide manner, e.g., sensor nodes not acting as routers and with
improving energy conditions should not raise their sampling rate if forwarding nodes
have poor energy conditions and thus do not support forwarding additional radio
packets.

57

7. CONCLUSION

58

Bibliography

[DFPC08] Prabal Dutta, Mark Feldmeier, Joseph Paradiso, and David Culler. Energy Meter-
ing for Free: Augmenting Switching Regulators for Real-Time Monitoring. In
Proceedings of the International Conference on Information Processing in Sensor
Networks, IPSN ’08, St. Louis, Missouri, USA, April 2008.

[DHJ+06] Prabal Dutta, Jonathan Hui, Jaein Jeong, Sukun Kim, Cory Sharp, Jay Taneja,
Gilman Tolle, Kamin Whitehouse, and David Culler. Trio: Enabling Sustainable
and Scalable Outdoor Wireless Sensor Network Deployments. In Proceedings
of the International Conference on Information Processing in Sensor Networks,
IPSN ’06, Nashville, Tennessee, USA, April 2006.

[DOTH07] Adam Dunkels, Fredrik Österlind, Nicolas Tsiftes, and Zhitao He. Software-
Based On-Line Energy Estimation for Sensor Nodes. In Proceedings of the IEEE
Workshop on Embedded Networked Sensors, EmNets ’07, Cork, Ireland, June
2007.

[JTO+07] Xiaofan Jiang, Jay Taneja, Jorge Ortiz, Arsalan Tavakoli, Prabal Dutta, Jaein
Jeong, David Culler, Philip Levis, and Scott Shenker. An Architecture for Energy
Management in Wireless Sensor Networks. ACM Special Interest Group on
Embedded Systems (SIGBED) Review, 4, July 2007.

[KHZS07] Aman Kansal, Jason Hsu, Sadaf Zahedi, and Mani B Srivastava. Power Manage-
ment in Energy Harvesting Sensor Networks. ACM Transactions on Embedded
Computing Systems (TECS), 6, September 2007.

[KSS+07] V. Kyriatzis, N. S Samaras, P. Stavroulakis, H. Takruri-Rizk, and S. Tzortzios.
Enviromote: A New Solar-Harvesting Platform Prototype for Wireless Sensor
Networks / Work-in-Progress Report. In Proceedings of the IEEE International
Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC ’07,
Athens, Greece, September 2007.

[KV86] P. R. Kumar and Pravin Varaiya. Stochastic Systems: Estimation, Identification
and Adaptive Control. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1986.

[LBV06] Koen Langendoen, Aline Baggio, and Otto Visser. Murphy Loves Potatoes: Ex-
periences from a Pilot Sensor Network Deployment in Precision Agriculture. In
Proceedings of the International Conference on Parallel and Distributed Process-
ing, IPDPS ’06, Rhodes Island, Greece, April 2006.

59

B IBLIOGRAPHY

[MPE+06] Kirk Martinez, Paritosh Padhy, Ahmed Elsaify, Gang Zou, A. Riddoch, Jane K.
Hart, and H. L. R. Ong. Deploying a Sensor Network in an Extreme Environ-
ment. In Proceedings of the IEEE International Conference on Sensor Networks,
Ubiquitous, and Trustworthy Computing, SUTC ’06, Taichung, Taiwan, June
2006.

[MTBB07] Clemens Moser, Lothar Thiele, Davide Brunelli, and Luca Benini. Adaptive
Power Management in Energy Harvesting Systems. In Proceedings of the Confer-
ence on Design, Automation and Test in Europe, DATE ’07, Nice, France, April
2007.

[MTBB08] Clemens Moser, Lothar Thiele, Davide Brunelli, and Luca Benini. Robust and
Low Complexity Rate Control for Solar Powered Sensors. In Proceedings of
the Conference on Design, Automation and Test in Europe, DATE ’08, Munich,
Germany, March 2008.

[OII+07] Takahiro Ono, Hiroki Isizuka, Kanoko Ito, Yasuyuki Ishida, Shohei Miyazaki,
Oru Mihirogi, and Yoshito Tobe. UScan: Towards Fine-Grained Urban Sensing.
In Proceedings of the International Workshop on Real Field Identification, RFId
’07, Tokyo, Japan, November 2007.

[PBAR09] J. R Piorno, C. Bergonzini, D. Atienza, and T. S Rosing. Prediction and Manage-
ment in Energy Harvested Wireless Sensor Nodes. May 2009.

[Ram09] Maneesha V. Ramesh. Real-Time Wireless Sensor Network for Landslide Detec-
tion. In Proceedings of the International Conference on Sensor Technologies and
Applications, SENSORCOMM ’09, Athens/Glyfada, Greece, June 2009.

[Ren10] Christian Renner. Energy-budgeting sensor networks with renewable energy
sources. In Proceedings of the SenSys Doctoral Colloquium, SenSys DC, Zurich,
Switzerland, November 2010.

[RJT09] Christian Renner, Jürgen Jessen, and Volker Turau. Lifetime Prediction for
Supercapacitor-powered Wireless Sensor Nodes. In Proceedings of the GI/ITG
KuVS Fachgespräch "Drahtlose Sensornetze", FGSN ’09, Hamburg, Germany,
August 2009.

[RKH+05] Vijay Raghunathan, Aman Kansal, Jason Hsu, Jonathan Friedman, and Mani
Srivastava. Design Considerations for Solar Energy Harvesting Wireless Embed-
ded Systems. In Proceedings of the International Symposium on Information
Processing in Sensor Networks, IPSN ’05, Los Angeles, California, April 2005.

[SDS10] Thomas Schmid, Prabal Dutta, and Mani B. Srivastava. High-Resolution, Low-
Power Time Synchronization an Oxymoron no More. In Proceedings of the
International Conference on Information Processing in Sensor Networks, IPSN
’10, Stockholm, Sweden, April 2010.

60

B IBLIOGRAPHY

[SM11] R. Saravana Kumar S. Millika. Review on Ultracapacitor Battery Interface
for Energy Management System. International Journal of Engineering and
Technology (IJET), 3(1), February 2011.

[SMP+04] Robert Szewczyk, Alan Mainwaring, Joseph Polastre, John Anderson, and David
Culler. An Analysis of a Large Scale Habitat Monitoring Application. In Proceed-
ings of the International Conference on Embedded Networked Sensor Systems,
SenSys ’04, Baltimore, MD, USA, November 2004.

[TPS+05] Gilman Tolle, Joseph Polastre, Robert Szewczyk, David Culler, Neil Turner, Kevin
Tu, Stephen Burgess, Todd Dawson, Phil Buonadonna, David Gay, and Wei Hong.
A Macroscope in the Redwoods. In Proceedings of the International Conference
on Embedded Networked Sensor Systems, SenSys ’05, San Diego, California,
USA, November 2005.

[VGB07] Christopher M. Vigorito, Deepak Ganesan, and Andrew G. Barto. Adaptive
Control of Duty Cycling in Energy-Harvesting Wireless Sensor Networks. In
Proceedings of the IEEE Communications Society Conference on Sensor, Mesh,
and Ad Hoc Communications and Networks, SECON ’07, San Diego, California,
USA, June 2007.

[ZSA10] Bo Zhang, Robert Simon, and Hakan Aydin. Energy Management for Time-
critical Energy Harvesting Wireless Sensor Networks. In Proceedings of the
International Conference on Stabilization, Safety, and Security of Distributed
Systems, SSS ’10, NewYork, NY, USA, September 2010.

61

B IBLIOGRAPHY

62

AppendixAAppendixA

Content of the DVD

The attached DVD contains the implemented framework as well as a bundle of
simulation results. Finally, an electronic version of this thesis together with it’s source
code is contained.

The directory structure consists of the following parts: In the directory implementa-

tion/EnergyBudget the implementation as presented in this thesis is stored. Some other
directories in implementation provide additional modules needed for compilation. In
order to compile the implementation there exist two shell scripts implementation/En-

ergyBudget/test/tossim/compile.sh and implementation/EnergyBudget/test/realworld/-

compile.sh. Both require an installed TinyOS environment. Appropriate settings can
be made inside the shell scripts. The first shell script results in an executable file
implementation/EnergyBudget/test/tossim/simulation that writes its simulated values
to standard output. The second shell script will result in a binary file that can be flashed
to a sensor node as usual in TinyOS.

The second directory simulation includes some simulation results, while the last
one latex contains the source code for compiling this thesis. An already compiled
version of this thesis can be found in the root directory.

63

	Titlepage
	Declaration by Candidate
	Table of Contents
	List of Symbols
	1 Introduction
	2 State of the Art
	2.1 Sensor Networks and Deployments
	2.1.1 Sensor Nodes
	2.1.2 Sensor Network Deployments

	2.2 Residual Energy and Energy Consumption
	2.2.1 Premeasured Energy
	2.2.2 Componentwise Energy Measurement
	2.2.3 iCount
	2.2.4 Conclusion

	2.3 Prediction Techniques
	2.3.1 Exponentially Weighted Moving Average
	2.3.2 Weather Conditioned Moving Average
	2.3.3 Variable Slot Lengths

	2.4 Energy-Aware Load Adaption
	2.4.1 Harvesting-Aware Power Management
	2.4.2 Linear Quadratic Tracking
	2.4.3 Multiparametric Linear Programming
	2.4.4 Energy Management for Time-Critical Applications
	2.4.5 Directive-Based Energy Management

	3 Requirement Analysis
	3.1 Demands for Wireless Sensor Networks
	3.2 Analysis of Hardware Requirements
	3.3 Performance Levels for Energy-Aware Scheduling

	4 Energy-Aware and Prediction-Based Scheduling
	4.1 Energy Policies
	4.2 Energy-Progress Simulation
	4.2.1 System Model
	4.2.2 Adaptions for Simulation
	4.2.3 Solution of Differential Equation

	4.3 Energy Consumption
	4.4 Algorithm

	5 Software Design and Implementation
	5.1 Design Considerations
	5.1.1 Job Concept
	5.1.2 Energy Aware Scheduler

	5.2 Implementation
	5.2.1 Energy Manager
	5.2.2 Simulation
	5.2.3 Sample Jobs

	6 Evaluation
	6.1 Metrics
	6.2 LQ-Tracker
	6.3 Policy Assessment
	6.4 Influence of System Model Parameters
	6.4.1 Prediction
	6.4.2 Number of Performance Levels
	6.4.3 Capacity of Supercapacitor

	6.5 Real-World Deployment
	6.6 Limitations

	7 Conclusion
	Bibliography
	A Content of the DVD

