Automated High-Accuracy Hybrid Measurement for Distributed Embedded Systems

Marcus Thoss
Distributed Operating Systems (DOPSY) Group
Fachhochschule Wiesbaden / University of Applied Sciences
Fachbereich Informatik
Kurt-Schumacher-Ring 18
D-65197 Wiesbaden / Germany

email: thoss@informatik.fh-wiesbaden.de
WWW: http://wwwvs.informatik.fh-wiesbaden.de

WISES 2005
May 20th 2005
Hamburg, Germany

Introduction

The challenge: timing measurements of distributed real-time systems

• Requirements:
 • high accuracy
 • common ("global") time base
 • using embedded systems: limited facilities

• Additional requirements for this study:
 • record single events
 • end-to-end delays of communication events
 • large number of measurement runs ⇒ unattended operation

• Practical approach preferred, matching goals with minimum effort

Overview

• Introduction
• Hybrid Approach
• Modified Approach
• Approaches Compared
• Automated Measurement System
• Summary

Initial decisions derived:

• End-to-end delay ⇒ local clock timestamps not sufficient
• Dedicated clock source provides global time at observer
• Events are best generated locally
 • timestamp is determined by observer recording the event
 ⇒ hybrid approach

• Limited scope of "global" time as assumed here:
 • nodes within the experiment
 • time span covering the experiment

• Experiment conduction and analysis should be automated
Hybrid Approach

Combining local / centralised timestamp recording / processing

- **Determining the occurrence of an event**
 - event is determined locally
 - thus: close integration of event generation code and its context
 - events are exposed to an observer instance (device)
 - here: dedicated event signalling connections at hardware level

- **Mapping of events to timestamps**
 - exposed events are recorded by a central device
 - a high-accuracy clock source within the recording device is used to timestamp every event within a common time base ("global clock")
 - event context information (also exposed at event generation) is recorded with the timestamp for subsequent event identification/correlation

Implementation Strategy

- Instrumentation of application code provides event signaling and counter value on PC parallel port
- Logic analyser records events with timestamps and counter value (context)
 - Customized logic analyser recording state machine allows
 - long-term and high resolution time stamp acquisition
 - single event recording with multiple event sources
 - true end-to-end latency measurement (common time base)

Correlation of send/receive event pairs based on counter values

Characteristics:
- 10 ns logic analyser resolution
- 17µs latency for event occurrence → logic analyser capture
 - mostly through I/O driver for parallel port access
 - 0.1 µs mean probable error

Modified Approach

- **Motivation:** greater number of nodes, more context data
 - capabilities of original implementation are exceeded

- **Local clocks are used to capture timestamps**
 - common time base is initially lost

- For each measured node, establish a reference timestamp on the central timing device
 - reference timestamps are taken at beginning / end of measurement
 - procedure equals "original approach"

- **Regain "global time" by mapping of local timestamps to logic analyser time**
 - mapping is performed off-line after the measurement
 - timestamp data may remain distributed
Modified Approach

Mapping of local timestamps

- Assumed: merely linear clock drift within each node
- For reference timestamps $T_{LA1,2}$, local timestamps $T_{PC1,2}$ have been recorded

\Rightarrow Local timestamps T_{PC} can be mapped to "global" timestamps T_{LA}:

$$t_{LA} = (t_{PC} - T_{PC1}) \times \frac{T_{LA2} - T_{LA1}}{T_{PC2} - T_{PC1}} + T_{LA1}$$

Approaches Compared

Limitations using local clocks

- Non-linear drift is not regarded
 \Rightarrow not suitable for variable processor clock speed and/or significant thermal changes affecting the clock speed
- Resolution and accuracy of the local clock must be sufficient

Benefits using local clocks

- Reduced overhead for taking timestamps
- No I/O access for event signalling: jitter is reduced
- Allows greater number of measurement nodes
- Context data can be more complex because it is kept locally

Automated Measurement System

Motivation for automated measurement, from study experiment:
- all permutations of parameter settings should be measured
 \Rightarrow 400 measurements * 400 samples = 160,000 samples
- experiment conduction / sample management and analysis likely to become tedious and error-prone

Solution: Measurement control application on operator PC
- experiment setup
- variation of experiment parameters
- control of experiment run/stop and data acquisition
- sample data management
- send/receive event correlation
- automated statistical analysis and diagram generation

Automated Measurement System

- Operator PC runs control application as Excel VBA module
- NT 3 is connected to logic analyser, vendor provided control application is wrapped by custom OLE Automation server
- Experiment schedule UI for parameter preparation / execution
- Remote control of NT1 / NT2 through UDP communication
- Finally: automated sample import into Excel + analysis
Example Diagrams Showing Single Event Data

- Only possible using single event recording
- Singular exceptions visible (here: packets violating QoS)
- Appearance of artifacts, resulting from secondary effects

Summary

- Two aspects combined, forming a versatile measurement system
 - hybrid high-accuracy measurement
 - automated experiment conduction and analysis
- Single event recording preserving singular phenomena
- Automated operation: saving time, reducing errors
- Early judgements supported by analysis generation
- Usability and accuracy have been verified
 - accompanying application study
- Measurement system has been reused in several research projects
- Future extensions and enhancements planned